Properties of Born rigid congruence

  • I
  • Thread starter cianfa72
  • Start date
  • #141
cianfa72 said:
one must rotate tetrad's spacelike vector fields about the 4-velocity
No, this doesn't make sense. The 4-velocity is a timelike vector that is orthogonal to the spacelike vectors. It is not a spacelike vector orthogonal to the plane of rotation, which is what a rotation axis is.

cianfa72 said:
I don't grasp it from a mathematical point: if the generalized Fermi normal coordinates do not work on a worldtube about a given congruence's worldline, on the same ground the construction of coordinate chart involving the timelike KVF shouldn't.
You keep repeating this wrong statement without apparently even noticing the reasons I have already given you for why it is false. I have already pointed out to you the key difference between the 4-velocity field and the KVF. Multiple times. Go back and read my posts again.

cianfa72 said:
is it always true that for a timelike Killing congruence the KVF and the direction of proper acceleration commute at each point along the congruence ?
I don't know, and I don't have time to try either proving this or finding a counterexample.
 
Physics news on Phys.org
  • #142
PeterDonis said:
No, this doesn't make sense. The 4-velocity is a timelike vector that is orthogonal to the spacelike vectors. It is not a spacelike vector orthogonal to the plane of rotation, which is what a rotation axis is.
Ah ok, you are right. However such rotations leave invariant the timelike coordinate basis vector along the worldline.

PeterDonis said:
I have already pointed out to you the key difference between the 4-velocity field and the KVF. Multiple times. Go back and read my posts again.
Yes that's true, however we don't have a mathematical argument/reason that shows why it doesn't work for generalized Fermi normal coordinates (i.e. Fermi normal coordinates followed from rotations). We know that it works for timelike KVF in special cases like Langevin or similar congruences.

PeterDonis said:
I don't know, and I don't have time to try either proving this or finding a counterexample.
Ok, so for sure we can claim that the timelike KVF of Langevin congruence and the direction of proper acceleration do commute (alike the case of Rindler congruence). However, up to now, we have no proof that this result extend to any timelike Killing congruence.
 
Last edited:
  • #143
PeterDonis said:
As I have commented in response to the OP, in general this will not always work. We have seen a counterexample in this thread: the Langevin congruence frame field given in the Insights article I referenced, where ##\hat{p}_0## is the 4-velocity of the worldlines and ##\hat{p}_2## always points radially outward, is not a valid coordinate basis because ##\hat{p}_0## and ##\hat{p}_2## do not commute. Because of the nonzero vorticity of the congruence, ##\hat{p}_2## is not Fermi-Walker transported along the worldlines.

It is possible, however, to use the timelike Killing vector field ##K## whose integral curves are the Langevin congruence worldlines as the timelike basis vector for a coordinate chart in which ##\hat{p}_2## is also a coordinate basis vector, since ##K## does commute with ##\hat{p}_2##. This is still "similar" to the Fermi-Walker plus rotation construction you describe since ##K## is still tangent to the worldlines; it's just not a unit tangent to the worldlines.
I disagree. MTW demonstrates this construction working in full GR with arbitrary base world line and arbitrary rotation function. What is generally true is that congruence of resulting constant position lines is not hypersurface orthogonal, and the coverage is only for a tube around the world line. Note, Fermi Normal coordinates , and the rotation generalization, are not based on a starting congruence. Instead they are based on one origin world and one chosen tetrad, which is Fermi-walker transported, then rotated, then used as a basis for the hypersurface. See pages 327 to 332 of MTW.

I can look later for a paper that demonstrates my other claim: that whenever the base world line motion plus rotation are a possible Born rigid motion, then the constant position congruence in generalized Fermi-Normal coordinates is a Born rigid congruence. This result is considered somewhat well known.
 
Last edited:
  • #144
PAllen said:
I disagree. MTW demonstrates this construction working in full GR with arbitrary base world line and arbitrary rotation function. What is generally true is that congruence of resulting constant position lines is not hypersurface orthogonal, and the coverage is only for a tube around the world line.
You mean in bold the congruence of worldlines each described by constant spatial coordinates and varying coordinate time in the generalized Fermi normal coordinate chart being built with a coverage only for a worldtube around the picked worldline.
 
  • #145
cianfa72 said:
You mean in bold the congruence of worldlines each described by constant spatial coordinates and varying coordinate time in the generalized Fermi normal coordinate chart being built with a coverage only for a worldtube around the picked worldline.
Correct.
 
  • #146
PAllen said:
I can look later for a paper that demonstrates my other claim: that whenever the base world line motion plus rotation are a possible Born rigid motion, then the constant position congruence in generalized Fermi-Normal coordinates is a Born rigid congruence. This result is considered somewhat well known.
Sorry, what does it mean that the base worldline motion plus rotation are a possible Born rigid motion ?
 

Similar threads

  • Special and General Relativity
2
Replies
57
Views
2K
  • Special and General Relativity
Replies
8
Views
3K
  • Special and General Relativity
Replies
4
Views
1K
  • Special and General Relativity
Replies
20
Views
2K
  • Special and General Relativity
2
Replies
38
Views
2K
  • Special and General Relativity
2
Replies
40
Views
3K
  • Special and General Relativity
3
Replies
78
Views
4K
  • Special and General Relativity
Replies
16
Views
2K
  • Special and General Relativity
3
Replies
82
Views
14K
  • Special and General Relativity
Replies
8
Views
1K
Back
Top