Quantum Mechanics Boundary conditions

AI Thread Summary
The discussion focuses on clarifying doubts regarding boundary conditions in quantum mechanics, specifically in Step 3 of a problem. Participants emphasize the importance of clearly stating the doubt to facilitate assistance. The solution involves using two separate wave functions for different regions, with each function representing waves in both directions. At the boundary, the wave functions must be equal, and this equality can be evaluated at the boundary point. The conversation highlights the necessity of matching both the wave functions and their derivatives at the boundary for a complete solution.
MaxJ
Messages
7
Reaction score
0
Homework Statement
below
Relevant Equations
below
For this problem,
1723530036965.png

The solution is,
1723530056524.png

1723530081396.png

1723530099482.png

1723530114429.png

I have a doubt about Step number 3 about boundary conditions. Someone maybe be able to solve that doubt?

Kind wishes
 
Physics news on Phys.org
MaxJ said:
I have a doubt about Step number 3 about boundary conditions. Someone maybe be able to solve that doubt?
Not unless you tell us what your actual doubt is. The math is straightforward, essentially plug-and-chug.
 
Orodruin said:
Not unless you tell us what your actual doubt is. The math is straightforward, essentially plug-and-chug.
Sir, bless you.

Doubt is matching wave functions give A + B = C + D and how they get their expression for derivatives (also in step 3).
 
MaxJ said:
Doubt is matching wave functions give A + B = C + D and how they get their expression for derivatives (also in step 3).
It would be more conventional (and clearer) to consider 2 separate wave-functions, one for each region: ##\psi_1## for ##x<0## and ##\psi_2## for ##x \ge 0##.

Each wave-function contains 2 terms, representing waves moving in the +x and -x directions in that region.

So, adapting your solution’s notation:
##\psi_1(x) = A e^{ikx} + Be^{-ikx}##
##\psi_2(x) = C e^{iqx} + De^{-iqx}##

At ##x=0## we require that ##\psi_1 =\psi_2##. Simply evaluate ##\psi_1##and ##\psi_2## at ##x=0## and equate them.

Similarly for the dervatives.
 
Last edited:
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top