- #386
- 8,638
- 4,685
Similarly, in relativity, the weirdness is in that different observers measure different clock times. it is weird only until you have a good mental scheme to think about it. People coming across relativity for the first time find it weird (and therefore intriguing, since it seems like a magical part of reality), but after getting accustomed to it, it is considered common sense.ddd123 said:the weirdness is in the correlated results themselves.
stevendaryl had complained...
stevendaryl said:The problem that I have with QM is that it is so unclear what its semantics are. Is the wave function a description of the state of the world, or is it a description of our knowledge about the world? Or somehow both? Neither alternative really fits all the facts comfortably. Then there is the discrepancy between the objects described by the mathematical formalism (amplitudes for different possibilities) and what is actually observed (definite values for whatever is measured). Special Relativity similarly shows up a huge difference between what the theory says and what our observations show, but in the SR case, what things look like to an observer can be derived from what they are, at an objective level. In QM, there seems to be a fundamental distinction between observations and the underlying equations of physics, which means that the former is not completely explained by the latter.
...that the weirdness in quantum mechanics is different since there is no good mental picture (''semantics''), and therefore people struggle with different interpretations for now nearly a century. I separated in the other thread subjective and objective, and clarified the semantics of what causality should mean, and how the subjective aspects of knowledge create the apparent causality problems. Unfortunately, it didn't seem to help him. But the discussion clarified a lot for me.