Questions on Internal Energy and Specific Heat Capacities

AI Thread Summary
The discussion revolves around questions related to internal energy and specific heat capacities, with a focus on calculating thermal capacity, the time to boil water in an electric kettle, and energy required to remove a water molecule from boiling water. Specific heat capacities for water, ice, lead, and copper are provided, along with latent heat values for ice and water. The user seeks clarification on thermal capacity calculations and the relationship between latent heat of vaporization and condensation. Responses indicate a need for step-by-step guidance, particularly for the kettle's boiling time and the energy calculations. The conversation highlights the importance of understanding definitions and concepts in thermodynamics.
Auron87
Messages
10
Reaction score
0
I've got a set of questions based on internal energy and specific heat capacities and things. I could just do with a bit of help on some of them. Just a push in the right direction will probably do! Thanks.

Specific heat capacity of water = 4200 J/kg/K
Specific heat capacity of ice = 2100 J/kg/K
Specific heat capacity of lead = 130 J/kg/K
Specific heat capacity of copper = 390 J/kg/K
Specific latent heat of fusion of ice = 330 kJ/kg
Specific latent heat of vaporisation of water = 2.3MJ/kg

1. Calculate the thermal capacity of an object that contains 950g of copper and 700g of lead.

2. An electric kettle is rated as 2.5kW. The thermal capacity of the kettle is negligible and then kettle is filled with 1.2kg of water at 15 degrees C.
Calculate (a) the time taken for the kettle to bring the water to the boil and (b) the mass of the water boiled away in 4 mins.

3. The mass of 1.0 mole of water is 0.018 kg. Estimate the energy required to remove a molecule of water from the surface of boiling water. (Avogadro constant = 6.02 x 10^23 mol^-1).

And also if something is as steam and is condensing to water then wuold the specific latent heat of it be the same as the latent heat of vaporisation of water?

Thanks again!
 
Physics news on Phys.org
There isn't a whole lot of room to "hint" at these --- you understand the definitions or you don't --- these are "What color was George Washington's white horse?" type questions. One step at a time, and show where you're getting lost.
 
Well for question 1 I don't really understand what it means by thermal capacity but what I think I would do is work out the heat capacity by multiplying the specific heat capacity by the mass and then add the two together.
For the 2nd question I think I've done part (a) although I'm not sure that it is correct. This is what I did:
2.5 kW = 2500 J/s
dQ = mc(dT)
= 1.2 x 4200 x 85
= 428400
428400/2500 = 171.36 secs
Part (b) I don't really know where to start with

The 3rd question I am very confused about and again don't really know where to start.
 
1) Yup.

2) Good so far. b) Step at a time: decide whether 4 min. is total time, or time elapsed after you get to boiling temp.; then, 4min. or 4 min. - your 171 sec. times burner power equals total energy you've put into vaporizing water.

3) How much water are you evaporating/vaporizing? 1/A moles?

Enthalpy of vaporization is minus enthalpy of condensation, or vice versa.
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...

Similar threads

Back
Top