Real Gas PV Curve: Volume Explained

AI Thread Summary
The discussion revolves around the volume characteristics of a gas as it transitions to a liquid state on the Real Gas PV curve. It emphasizes that even after liquefaction, the liquid phase retains volume, albeit significantly less than the gaseous phase. The key point is that the volume being analyzed is the total volume, which includes both gas and liquid phases. Participants are encouraged to reflect on the implications of this volume distinction. Understanding this concept is crucial for grasping the behavior of real gases in thermodynamic processes.
abcd8989
Messages
44
Reaction score
0
http://faculty.wwu.edu/vawter/PhysicsNet/Topics/Thermal/gifs/vdWaalEOS02.gif
After the gas has been liquified, the gas volume should have disappeared. Why the liquid part of the curve still possesses volume?
 
Last edited by a moderator:
Physics news on Phys.org
Think about it for a few minutes, please.
 
Isn't the volume under consideration the gas volume? When the gas is liquified, there should be no volume...
 
No, the volume under consideration is the complete volume. Liquid still possesses volume, though it is much smaller than the gas volume.
 
Thread ''splain this hydrostatic paradox in tiny words'
This is (ostensibly) not a trick shot or video*. The scale was balanced before any blue water was added. 550mL of blue water was added to the left side. only 60mL of water needed to be added to the right side to re-balance the scale. Apparently, the scale will balance when the height of the two columns is equal. The left side of the scale only feels the weight of the column above the lower "tail" of the funnel (i.e. 60mL). So where does the weight of the remaining (550-60=) 490mL go...
Consider an extremely long and perfectly calibrated scale. A car with a mass of 1000 kg is placed on it, and the scale registers this weight accurately. Now, suppose the car begins to move, reaching very high speeds. Neglecting air resistance and rolling friction, if the car attains, for example, a velocity of 500 km/h, will the scale still indicate a weight corresponding to 1000 kg, or will the measured value decrease as a result of the motion? In a second scenario, imagine a person with a...
Scalar and vector potentials in Coulomb gauge Assume Coulomb gauge so that $$\nabla \cdot \mathbf{A}=0.\tag{1}$$ The scalar potential ##\phi## is described by Poisson's equation $$\nabla^2 \phi = -\frac{\rho}{\varepsilon_0}\tag{2}$$ which has the instantaneous general solution given by $$\phi(\mathbf{r},t)=\frac{1}{4\pi\varepsilon_0}\int \frac{\rho(\mathbf{r}',t)}{|\mathbf{r}-\mathbf{r}'|}d^3r'.\tag{3}$$ In Coulomb gauge the vector potential ##\mathbf{A}## is given by...
Back
Top