Requesting guidance on Commutators & Intro QM

AI Thread Summary
The discussion centers on a request for guidance on solving a quantum mechanics problem involving commutators, specifically calculating [Alpha, Beta] given certain definitions of Alpha and Beta. The original poster expresses uncertainty about their approach and seeks clarification on the use of angular momentum and the implications of the Plus sign in the Beta term. A response advises treating Alpha and Beta as operators rather than simple quantities, emphasizing the importance of understanding fundamental commutation relationships. Additionally, the responder suggests using LaTeX for clearer communication in future posts. The overall focus is on enhancing conceptual understanding of quantum mechanics through collaborative learning.
warhammer
Messages
164
Reaction score
33
Homework Statement
If Alpha=i( x*P(y) - y*P(x) ) & Beta=i( y*P(z) + z*P(y) ) are given, find [Alpha, Beta]
Relevant Equations
[Alpha, Beta]= αβ - βα
I have approached this question step by step as shown in the image attached.

I request someone to please guide if I have approached the (incomplete) solution correctly and also guide towards the complete solution, by helping me to rectify any mistakes I may have made.

I'm still unsure how to proceed here. Someone also suggested to use it in form of Angular Momentum, but what about the Plus sign in the Beta term, since Lx is specified as yPz-zPy !

PS: Please bear with me patiently. I had a horrible Prof this sem who shot my confidence in the subject to bits having me to learn all of QM in self study mode. Therefore I'm dependant on samaritans like you and forums like these to fine tune my conceptual knowledge 🙏🏻

IMG20220605141136__01.jpg
 
Physics news on Phys.org
warhammer said:
Homework Statement:: If Alpha=i( x*P(y) - y*P(x) ) & Beta=i( y*P(z) + z*P(y) ) are given, find [Alpha, Beta]
Relevant Equations:: [Alpha, Beta]= αβ - βα
Hi @warhammer. A few of points...

EDITed (mainly corrections as I forget about the 'z's)

It looks like you may be thinking of ##\alpha, \beta, x, y, z, p_x, p_y## and ##p_z## as simple quantities (real or complex values). In this case ##[\alpha, \beta]## would necessarily equal zero. (Why?)

Presumably you are intended to treat them as operators. They would generally be written with ‘hats’: ##\hat {\alpha}, \hat {\beta}, \hat x## etc.

Before you tackle this question, you should understand how the (hopefully familiar) commutation relationship ##[\hat x, \hat {p_x}] = iℏ## is derived. Try this video for example:

Once that’s clear, you should be in a better position to answer your original question.

If you intend posting here regularly, you are advised to use LaTeX to write equations; this makes it a lot easier to read your posts (and is a useful skill anyway). For example see https://www.physicsforums.com/help/latexhelp/.
 
Last edited:
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top