Sanity check please -- Load cable swinging outward on a rotating crane

AI Thread Summary
The discussion focuses on the physics of load cables swinging outward on a rotating crane, utilizing the equation Fcp = -m*w^2*r. Participants analyze the relationship between variables, particularly how to express r1 and r2 in terms of other parameters. There is a debate about the relevance of certain variables, with a suggestion that one variable may not be necessary. The importance of understanding the radius of rotation, R, as the sum of r1 and r2 is emphasized. The conversation concludes with a confirmation of the calculations and a light-hearted acknowledgment of simplifying the equation.
Thickmax
Messages
31
Reaction score
8
Homework Statement
Please can my work be sanity checked? I think I'm on the right lines
Relevant Equations
See below
1624914062559.png
So I know

Fcp=-m*w^2*r

So from the equation -m*w^2*r=m*g*tan(theta)

r = r1+r2

so to rewrite

-m*(w^2)*(r1+r2)=m*g*tan(theta)
So
r1+r2=(m*g*tan(theta))/-m*(w^2)

r1=((m*g*tan(theta))/-m*(w^2)) - r2

Am I doing this nearly correct?
 
Last edited by a moderator:
Physics news on Phys.org
Thickmax said:
Am I doing this nearly correct?
Yes, but one of your variables is not in the list of those allowed in the answer. Can you see a way to get rid of it?
 
Shouldn't ##r_2## be directly proportional to ##\omega^2##?
 
Lnewqban said:
Shouldn't ##r_2## be directly proportional to ##\omega^2##?
No the crane rotates around its base column, the radius of rotation is ##R=r_1+r_2## not just ##r_2##.
 
haruspex said:
Yes, but one of your variables is not in the list of those allowed in the answer. Can you see a way to get rid of it?
I can indeed! m's are overrated! Thank you for the confirmation
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top