- #1
AHSAN MUJTABA
- 89
- 4
- TL;DR Summary
- We know how inflation ends classically in a usual quadratic scalar potential case; ##1/2m^{2}\phi^{2}##., i.e. ##\phi ## starts oscillating towards ##0## magnitude.
I am facing a problem while wanting ##\phi## dynamics in a cubic potential; ##g\phi^{3}##. The equation of motion I get for my case is(this follows from the usual Euler-Lagrange equations for ##\phi## in cosmology--Briefly discussed in Carol's Spacetime Geometry, inflation chapter):,
$$\ddot{\phi}+3\sqrt{\frac{8 \pi G}{3}\Bigg(\frac{1}{2}\dot{\phi}^{2}+\frac{1}{2}m^{2}\phi^{2}+g\phi^{3} \Bigg)}\dot{\phi}+\Bigg(m^{2}\phi+3g\phi^{2}\Bigg)=0$$
Take ##G=1##. I tried to plot their phase portrait, but I got errors when plotting the equation's actual solutions for ##m=0.5## and ##g=5##. depicting no solutions. I am using Python. Does that mean for cubic potentials(non-symmetric), inflation might happen at some special initial conditions? I am also attaching phase portraits of cubic and quadratic cases. In phase portrait, the attractor represents the equilibrium position of ##\phi## meaning inflation has ended. If I add a cubic term to potential, then there must be two attractors. What do they represent? I am a bit confused.
$$\ddot{\phi}+3\sqrt{\frac{8 \pi G}{3}\Bigg(\frac{1}{2}\dot{\phi}^{2}+\frac{1}{2}m^{2}\phi^{2}+g\phi^{3} \Bigg)}\dot{\phi}+\Bigg(m^{2}\phi+3g\phi^{2}\Bigg)=0$$
Take ##G=1##. I tried to plot their phase portrait, but I got errors when plotting the equation's actual solutions for ##m=0.5## and ##g=5##. depicting no solutions. I am using Python. Does that mean for cubic potentials(non-symmetric), inflation might happen at some special initial conditions? I am also attaching phase portraits of cubic and quadratic cases. In phase portrait, the attractor represents the equilibrium position of ##\phi## meaning inflation has ended. If I add a cubic term to potential, then there must be two attractors. What do they represent? I am a bit confused.
Attachments
Last edited: