- #176
- 11,802
- 2,051
i see i ignored a question asking what the grad school experience is like, passing prelims, writing a thesis, etc...
so here goes a little on that. of course everyone enters grad school, in US anyway, with a different background. Since we have a shortage of PhD mathematicians in US, we are always scouting for talent and recruiting people to our programs. So many people get in who are less than ideally prepared.
Thus the beginning of the grad experience can be rough for the less prepared. At UGA we have recently begun a testing and placement program, and have courses designed to help people get up to speed on some crucial undergrad material they may not have been fully taught before. This is new, as it used to be more or less sink or swim.
Different schools are different on this matter of sink or swim, and it would be wise to find out whether your school just brings in and watches to see which ones survive, ot whether they try to help everyone make it. I suspect today most try to be helpful, but that may be less true where the school is very popular and the professors are very busy.
The most fortunate people are those who know all the basic stuff and are ready to begin work toward a thesis right away, the primary reason for being there.
At the other extreme, I entered not knowing what an ideal was and was immediately plunged into an algebra course on homological ring theory. I had also never had complex variable (in undergrad they said, "oh you'll learn that in grad school") and began in an analysis course that spent one month on reals and one on complex and moved on to Riemann surfaces!
So you need to come in knowing as much as possible, and also choose a school where the introduction is somewhat sensitive to what people know. (Brandeis was still a great place to be, and has no doubt also changed totally since then.)
So you must talk to people currently at the schools of interest, students as well as professors, to find out the department's expectations, and how those are viewed by students.
the first thing then is to get up to speed as quickly as possible. Writing a thesis will take much longer and be much harder usually than you could have imagined, so you need to get ready to do it and sart doing it as soon as possible.
so since for many students the first big hurdle is the prelims, i will post here the current prelim syllabi from UGA in a few subjects. The requirements may vary, and are constantly changing, but a pure mathematics aspirant should hope to be able to pass prelims in all 3 pure subjects, say topology, algebra, and at least one type of analysis, real or complex.
We have gradually made these syllabi less and less demanding over the years, continually removing material, to where they will probably read like undergraduate syllabi to students from abroad (or elite US schools) now.
Notice for example the algebra syllabus no longer covers noetherian rings and modules, nor tensor products, and the complex syllabus no longer covers elliptic functions or riemann mapping theorem. Still it is quite challenging for an average undergrad from the US to master all this in a short amount of time, i.e. a year or so of grad school.
Be sure to get these syllabi from your target school, as they may be very different at different places.
so here goes a little on that. of course everyone enters grad school, in US anyway, with a different background. Since we have a shortage of PhD mathematicians in US, we are always scouting for talent and recruiting people to our programs. So many people get in who are less than ideally prepared.
Thus the beginning of the grad experience can be rough for the less prepared. At UGA we have recently begun a testing and placement program, and have courses designed to help people get up to speed on some crucial undergrad material they may not have been fully taught before. This is new, as it used to be more or less sink or swim.
Different schools are different on this matter of sink or swim, and it would be wise to find out whether your school just brings in and watches to see which ones survive, ot whether they try to help everyone make it. I suspect today most try to be helpful, but that may be less true where the school is very popular and the professors are very busy.
The most fortunate people are those who know all the basic stuff and are ready to begin work toward a thesis right away, the primary reason for being there.
At the other extreme, I entered not knowing what an ideal was and was immediately plunged into an algebra course on homological ring theory. I had also never had complex variable (in undergrad they said, "oh you'll learn that in grad school") and began in an analysis course that spent one month on reals and one on complex and moved on to Riemann surfaces!
So you need to come in knowing as much as possible, and also choose a school where the introduction is somewhat sensitive to what people know. (Brandeis was still a great place to be, and has no doubt also changed totally since then.)
So you must talk to people currently at the schools of interest, students as well as professors, to find out the department's expectations, and how those are viewed by students.
the first thing then is to get up to speed as quickly as possible. Writing a thesis will take much longer and be much harder usually than you could have imagined, so you need to get ready to do it and sart doing it as soon as possible.
so since for many students the first big hurdle is the prelims, i will post here the current prelim syllabi from UGA in a few subjects. The requirements may vary, and are constantly changing, but a pure mathematics aspirant should hope to be able to pass prelims in all 3 pure subjects, say topology, algebra, and at least one type of analysis, real or complex.
We have gradually made these syllabi less and less demanding over the years, continually removing material, to where they will probably read like undergraduate syllabi to students from abroad (or elite US schools) now.
Notice for example the algebra syllabus no longer covers noetherian rings and modules, nor tensor products, and the complex syllabus no longer covers elliptic functions or riemann mapping theorem. Still it is quite challenging for an average undergrad from the US to master all this in a short amount of time, i.e. a year or so of grad school.
Be sure to get these syllabi from your target school, as they may be very different at different places.
Last edited: