A Some questions about the derivation steps in the Gravitational deflection of light section in Schutz

MathematicalPhysicist
Science Advisor
Gold Member
Messages
4,662
Reaction score
372
TL;DR Summary
My question is referring to some derivation from pages 293-294 of Schutz's second edition (2009) of A First Course in GR.
In the screenshots below there are the equations (11.49) and (11.53).

I don't understand how did he derive equation (11.53) from Eq.(11.49)?
From (11.49) I get: ##d\phi/dy= d\phi/du du/dy = (1/b^2-u^2+2Mu^3)^{-1/2}(1+2My)##.
It seems he neglected the ##2Mu^3## since ##Mu\ll 1##, so ##y\approx u##, but how do we get the added term of ##O(M^2u^2)##?

schutz2.pngschutz1.png
schutz1.png
schutz2.png
 
Physics news on Phys.org
I would have thought\begin{align*}
\dfrac{d\phi}{dy} = \dfrac{d\phi}{du} \left( \dfrac{dy}{du} \right)^{-1} &= \dfrac{( 1 - 2Mu)^{-1} }{\left( b^{-2} - u^2(1-2Mu) \right)^{1/2}}
\end{align*}then because ##y^2 = u^2(1-Mu)^2 \sim u^2(1-2Mu)## and also ##(1-2Mu)^{-1} \sim 1+2Mu + O(M^2u^2) \sim 1 + 2My + O(M^2u^2)## you get ##\mathrm{11.53}##...
 
  • Like
Likes Ibix and MathematicalPhysicist
ergospherical said:
I would have thought\begin{align*}
\dfrac{d\phi}{dy} = \dfrac{d\phi}{du} \left( \dfrac{dy}{du} \right)^{-1} &= \dfrac{( 1 - 2Mu)^{-1} }{\left( b^{-2} - u^2(1-2Mu) \right)^{1/2}}
\end{align*}then because ##y^2 = u^2(1-Mu)^2 \sim u^2(1-2Mu)## and also ##(1-2Mu)^{-1} \sim 1+2Mu + O(M^2u^2) \sim 1 + 2My + O(M^2u^2)## you get ##\mathrm{11.53}##...
It seems I got it wrong. Thanks for correcting me.
 
I asked a question here, probably over 15 years ago on entanglement and I appreciated the thoughtful answers I received back then. The intervening years haven't made me any more knowledgeable in physics, so forgive my naïveté ! If a have a piece of paper in an area of high gravity, lets say near a black hole, and I draw a triangle on this paper and 'measure' the angles of the triangle, will they add to 180 degrees? How about if I'm looking at this paper outside of the (reasonable)...
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
Back
Top