Textbook 'The Physics of Waves': Reason to force us to consider complex solution for harmonic motion?

AI Thread Summary
The discussion centers on the necessity of considering complex solutions for harmonic motion as outlined in "The Physics of Waves." It references a breakdown of time translation in the textbook that leads to the conclusion that complex solutions are required. However, it questions why one cannot simply use the property of irreducible solutions without resorting to complex formalism. The text argues that while complex solutions may simplify the process, they are not strictly necessary. Ultimately, the conversation highlights the implications of complex values in the context of simple harmonic motion.
brettng
Messages
17
Reaction score
0
TL;DR Summary: The reason to force us consider complex solution for harmonic motion.

Reference textbook “The Physics of Waves” in MIT website:
https://ocw.mit.edu/courses/8-03sc-...es-fall-2016/resources/mit8_03scf16_textbook/

Chapter 1 - Section 1.3 (see attached file)

IMG_8570.png


In (1.40), it breaks down the time translation from pi/omega to pi/2omega + pi/2omega; and concludes the square of h(pi/2omega) implying that we need to consider complex solution.

However, what prevents us use the property of irreducible solution and adopt

z(t+pi/omega) = h(pi/omega)z(t)

directly? (And this does not force us to use complex solution!)
 
Physics news on Phys.org
You do not need to use the complex formalism. It is just easier.
 
brettng said:
TL;DR Summary: The reason to force us consider complex solution for harmonic motion.

Reference textbook “The Physics of Waves” in MIT website:
https://ocw.mit.edu/courses/8-03sc-...es-fall-2016/resources/mit8_03scf16_textbook/

In (1.40), it breaks down the time translation from pi/omega to pi/2omega + pi/2omega; and concludes the square of h(pi/2omega) implying that we need to consider complex solution.

However, what prevents us use the property of irreducible solution and adopt

z(t+pi/omega) = h(pi/omega)z(t)

directly? (And this does not force us to use complex solution!)


From page 11 of the book:
1716051640532.png


It is easy to see that a function ##z(t)## that satisfies (1.38) cannot be a real-valued function for all ##t## if there exists a value of ##a## such that ##h(a)## is complex. The author shows on page 12 of the book that if ##z(t)## obeys (1.38) and if ##z(t)## is a solution of the equation of motion for simple harmonic motion (SHM), then ##h(a)## is imaginary for ##a = \pi/(2\omega)##.
 
Thank you so much for your help!!!!!!
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top