Thermodynamics: Two gases in a container

In summary, the study of thermodynamics involving two gases in a container examines how the gases interact with each other and their environment under various conditions. Key concepts include pressure, volume, temperature, and the laws of thermodynamics that govern energy transfer and equilibrium. The behavior of the gases can be analyzed using equations of state, allowing for predictions of their properties and the work done during processes like expansion or compression. Understanding these principles is essential for applications in fields such as engineering, chemistry, and physics.
  • #1
heyhey281
8
0
Homework Statement
Consider
a) two gases, each in a container with volume V
b) two gases in a container with volume V
Which system is more disordered, where is the entropy higher?
Relevant Equations
Ideal gas equation
(Van der Waals equation)
Ideal gas:
If the gases are of different type, I would say the entropy stays the same. The total entropy is in both cases just the sum S = S1 + S2, where S1 is the entropy of the first gas and S2 the entropy of the second gas.
If the gases are of the same type, I think the entropy change is also 0.

(I am not too sure if you can even distinguish ideal gases / call them different types?)

Real gas:
Due to the intermolecular forces, I think the molecules might "cluster" a little bit more which would lower the entropy? But on the other hand, I could first put both gases into the common volume V and hypothetically assume that there is absolutely no interaction between them ("switch off" the interaction between them before I mix them). Then I could “switch on” the interaction and wait until an equilibrium is reached. Since the system is isolated, the entropy cannot have possibly decreased?
 
Physics news on Phys.org
  • #2
heyhey281 said:
I am not too sure if you can even distinguish ideal gases - - -
In what sense? Your body does it all the time. You keep some of the oxygen that you breathe in and you breathe out carbon dioxide.

More to the point, I think you need to consider entropy of mixing.
 
Back
Top