Total force that a fluid exerts on a cylinder

AI Thread Summary
The discussion focuses on calculating the total force exerted by a fluid on a cylinder, with a calculated cylinder density of 5479 kg/m³. The user presents a detailed formula involving parameters such as angular velocity, radius, and fluid viscosities to derive a force of 50.11 N. There is confusion regarding the distinction between total force and torque, with suggestions that the total force should account for buoyancy. Additionally, the impact of neglecting friction at the base is debated, as it affects the velocity gradient. The conversation highlights the complexities of fluid dynamics calculations related to cylindrical objects.
Guillem_dlc
Messages
188
Reaction score
17
Homework Statement
A cylinder of diameter ##d=12,0\, \textrm{cm}## and height ##L=1,1\, \textrm{m}## is immersed floating at the interface between mercury (##\rho_{hg}=13580,0\, \textrm{kg}/\textrm{m}^3## and ##\mu_{hg}=0,0015\, \textrm{Pa}\cdot \textrm{s}##) and liquid paraffin (##\rho_{pr}=850,0\, \textrm{kg}/\textrm{m}^3## and ##\mu_{pr}=0,2\, \textrm{Pa}\cdot \textrm{s}##) within a glass tube of diameter ##D=12,2\, \textrm{cm}##. The cylinder is at ##c=0,2\, \textrm{cm}## from the bottom of the tube, the part immersed in mercury has a length of ##b=40,0\, \textrm{cm}## and the part immersed in liquid paraffin has a length of ##70,0\, \textrm{cm}##, as shown in the figure.

The cylinder is rotated by ##100,0 \, \textrm{rpm}##. Neglecting the friction at the base of the cylinder and the tube, determine the total force, in absolute value, that the fluid exerts on the cylinder, at ##\textrm{N}##.
Relevant Equations
##F=\tau A##
Figure:
508922CF-69E6-4502-9C76-4AA5FE2E244D.jpeg


I have calculated the density of the cylinder: ##5479,0\, \textrm{kg}/\textrm{m}^3##.

Attempt at a Solution:
$$d=0,12,\,\, L=1,1,\,\, D=0,122,\,\, e=0,002,\,\, c=0,02,\,\, b=0,4,\,\, a=0,7$$
$$\omega =100\, \textrm{rpm}=10,472\, \textrm{rad}/\textrm{s}\quad e=0,122-0,12=0,002$$
We know that: ##F=\tau A=\mu \dfrac{\omega r}{e}\cdot A\rightarrow##
We have two ##\mu##'s and two different areas:
  • Hg ##\rightarrow A=\pi r^2+2\pi r\cdot b##
  • Pr ##\rightarrow A=\pi r^2+2\pi ra##
$$\rightarrow F=\dfrac{\omega r}{e}(\pi r^2+2\pi rb+\pi r^2+2\pi ra)(\mu_{Hg}+\mu_{Pr})=$$
$$=\dfrac{\omega r}{e}(2\pi r^2+2\pi r(b+a))(\mu_{Hg}+\mu_{Pr})=\dfrac{\omega 2\pi r^2}{e}(1+b+a)(\mu_{Hg}+\mu_{Pr})$$
$$=50,11\, \textrm{N}$$
Here I don't know when I should use the integral and when I shouldn't. Would you do it like this?
 
Physics news on Phys.org
I've already got this one! Thanks
 
It says to neglect the friction at the base. If you don't neglect it, you have to consider that the velocity gradient varies across it.
Doesn't seem right that it asks for the total force. The total force would be the buoyancy. What you have calculated appears to be a torque. Maybe it’s the translation.
 
  • Like
Likes Guillem_dlc and Lnewqban
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top