Two forces acting on an object given in vectors - SOLVED

AI Thread Summary
The discussion focuses on applying Newton's second law to analyze two forces acting on an object. The user splits the forces into F1 and F2, using the equation F1 + F2 = ma. They derive F2 by rearranging the equation and substituting the mass and acceleration terms. Another participant suggests considering the forces as components in the I and J directions to clarify the calculations. This approach emphasizes the importance of breaking down forces into their vector components for accurate analysis.
runningphysics
Messages
6
Reaction score
3
Homework Statement
Two forces act on a 3.4 kg mass and undergoes an acceleration a= .87i - .32j m/s^2. One force is F= -.7i - 3.0j N. What is the other in terms of i + j?
Relevant Equations
F=ma, F1 + F2= ma
I tried splitting the forces up into F1 and F2 making Newtons second law equation into F1+F2=ma. Then I added over the the first force given. multiply the mass to the acceleration terms to get F2= (m*ai + m*aj) - F1
 
Physics news on Phys.org
Have you tried to look at it as components I and J as:

##F1_i + F2_i = m a_i## and similarly for j
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top