Understanding Fourier Transforms

AI Thread Summary
The discussion centers on using the Fourier transform to analyze the function x(t) = A sin(w1t) + B cos(w2t) for its frequency response and spectrum graph. Participants emphasize the importance of showing work when asking for help and clarify that a frequency response typically relates to transfer functions in circuits. The conversation also prompts the user to identify the frequency components present in the time domain function. Understanding these components is crucial for accurately sketching the frequency domain representation. Overall, the thread highlights the need for clarity in defining terms and demonstrating effort in problem-solving.
P99
Messages
1
Reaction score
0
New poster has been reminded (again) to always show their work when starting schoolwork threads
Homework Statement
How to obtain the frequency response and the spectrum graph of this function
x(t) = A sen(w1t) + Bcos(w2t)
Relevant Equations
Hi guys, can someone help me solve this.
Thanks.
I think that is with the Fourier transform.
 
Physics news on Phys.org
P99 said:
Homework Statement:: How to obtain the frequency response and the spectrum graph of this function
x(t) = A sen(w1t) + Bcos(w2t)
Relevant Equations:: Hi guys, can someone help me solve this.
Thanks.

I think that is with the Fourier transform.
You were asked to show your work when reposting this question. Please show more effort or this thread will also be deleted.

That said, what do you mean "frequency response" in the context of that equation? A frequency response is usually associated with the transfer function of a function block or circuit. Certainly you can sketch the frequency domain version of that time domain function, right? What are the two frequency components of that sketch?
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...

Similar threads

Replies
1
Views
3K
Replies
4
Views
1K
Replies
2
Views
496
Replies
5
Views
1K
Replies
4
Views
3K
Replies
47
Views
4K
Replies
6
Views
1K
Back
Top