- #1
spaghetti3451
- 1,344
- 34
This is the Euclidean classical action ##S_{cl}[\phi]=\int d^{4}x\ (\frac{1}{2}(\partial_{\mu}\phi)^{2}+U(\phi))##.
It would be nice if somebody could explain the structure of the potential.
I don't understand why ##\phi## is used instead of a position vector ##\textbf{r}##. Also, how can ##(\frac{1}{2}(\partial_{\mu}\phi)^{2}## be interpreted as the kinetic energy of the particle? I have integrated the Lagrangian over three spatial coordinates before, but why can the temporal coordinate be integrated over in this expression?
It would be nice if somebody could explain the structure of the potential.
I don't understand why ##\phi## is used instead of a position vector ##\textbf{r}##. Also, how can ##(\frac{1}{2}(\partial_{\mu}\phi)^{2}## be interpreted as the kinetic energy of the particle? I have integrated the Lagrangian over three spatial coordinates before, but why can the temporal coordinate be integrated over in this expression?