Using Feynman rules to calculate amplitude

Higgsy
Messages
18
Reaction score
0
Given a diagram, how is one supposed to apply the feynman rules to calculate the feynman amplitude?
 

Attachments

  • Screen Shot 2015-11-24 at 4.33.10 AM.png
    Screen Shot 2015-11-24 at 4.33.10 AM.png
    2.2 KB · Views: 620
Physics news on Phys.org
This is explained in any QFT textbook. What book/article did you get your picture from?
 
Those don't look like Feynman diagrams to me.
 
Srednicki. But these are not calculated in srednicki. To clarify, they are the vacuum feynman diagrams for $$\phi ^{4}$$ scalar theory
 
These are vacuum "bubble" diagrams, i.e., they contribute to the vacuum->vacuum transition amplitude in perturbation theory. To evaluate S-matrix elements you don't need them, because they cancel in the LSZ reduction formula via the correct normalization of the scattering amplitude.

To formally evaluate them you just use the Feynman rules and use any regularization procedure you like. Dimensional regularization is pretty convenient also in ##\phi^4## theory. Take the "8 diagram". The vertex stands for ##-\mathrm{i} \lambda/4!##. Then you have 3 ways to connect the first leg at the vertex with another line and then only 1 to connect the remaining legs. Thus you have a symmetry factor ##3##. The final dim-reg expression is.
$$\mathrm{i} V=\frac{\mathrm{i} \lambda \mu^{2 \epsilon}}{8} \int_{\mathbb{R}^d} \frac{\mathrm{d}^d l_1}{(2 \pi)^d} \int_{\mathbb{R}^d} \frac{\mathrm{d}^d l_2}{(2 \pi)^d} \frac{1}{(m^2-l_1^2)(m^2-l_2^2)},$$
where ##d=4-2 \epsilon## is the dimension of space-time.
 
I read Hanbury Brown and Twiss's experiment is using one beam but split into two to test their correlation. It said the traditional correlation test were using two beams........ This confused me, sorry. All the correlation tests I learnt such as Stern-Gerlash are using one beam? (Sorry if I am wrong) I was also told traditional interferometers are concerning about amplitude but Hanbury Brown and Twiss were concerning about intensity? Isn't the square of amplitude is the intensity? Please...
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Back
Top