I Velocity addition via k-calculus

pervect
Staff Emeritus
Science Advisor
Homework Helper
Insights Author
Messages
10,410
Reaction score
1,588
We had a thread a while ago where a poster was particularly interested in the SR rule of velocity addition. And in that thread, I suggested a better foundation was the k-calculus approach, with a reference to Bondi's treatment in "Relativity and Common Sense".

Here I would like to show how to derive the special relativity velocity addition rule using some results from the k-calculus approach.

K calculus basically says that if a light signal is transmitted via some observer O and received by some observer A, there will be a doppler shift such that the received frequency at A is some multiple k of the transmitted frequency from O. This factor k is only dependent on the relative velocity v between two observers, not the distance between them.

Using the results from Bondi, one can use a simple radar setup to determine the relationship between k and v given the fact that the speed of light is constant for all observers.

This is not particularly hard, but somewhat lengthly, and would require diagrams to illustrate clearly. I will summarize the important results from Bondi as the following relations between k and v.

$$k = \sqrt{ \frac{1-\beta}{1+\beta } } $$

$$v = c \, \frac{1-k^2}{1+k^2} $$

Here c is the speed of light, and ##\beta = v/c##.

The part that I wish to show is how to compute the velocity addition formula from these results. Suppose we now have 3 observers, O, A, and B. And there is some velocity ##v_1## between the pair of observers (O,A), and some velocity ##v_2## between the pair of observers (A,B). We wish to find the velocity between the pair of observers (O,B), which we will denote as ##v_t##. We will also use the notation that ##\beta_1 = v_1/c## and ##\beta_2 = v_2/c##.

When we reformulate this in terms of doppler shift, we will note that there is some k-factor ##k_1## between observers (O,A) and some k-factor ##k_2## between observers (A,B). And we can conclude that the k factor between (O,B) is just the product of k_1 and k_2, namely.

$$k_t = k_1 * k_2$$

To see why this is true, take an example. Observer A emits light, whose frequency is multipled by some factor k_1, which we will take as 1/2, so that the frequency received by A is 1/2 the frequency emitted by O. Similarly, when B emits light, there will be some factor k_2, which we will take as 1/3, so that in the example observer B receives light at 1/3 the frequency emitted by A. We can then conclude that observer B in this example receives light at 1/6 the frequency as emitted by O, and more generally that the k-factor between O and A is just k_1 * k_2

The rest is algebra, which is perhaps slightly messy, but it's still just algebra. We write

$$k_t = \sqrt{ \frac{1-\beta_1} {1+\beta_1} \cdot \frac{1-\beta_2} {1+\beta_2} }$$
$$v_t = \frac{1-k_t{}^2}{1+k_t{}^2}$$

And when we simplify this we find

$$v_t = c \, \frac{\beta_1 + \beta_2} {1+\beta_1 \beta_2}$$

the expected velocity addition formula of special relativity.
 
Physics news on Phys.org
You should post this as an Insight. In the forums it will just be lost among 200 threads misunderstanding the relativity of simultaneity.
 
For what it's worth, there is a Wikipedia article Bondi k-calculus with lots of diagrams. (Disclosure: I wrote most of it.)

 
  • Like
  • Love
Likes Ibix and malawi_glenn
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
Back
Top