Velocity of two masses due to electric potential energy

AI Thread Summary
The discussion focuses on calculating the velocity of two masses influenced by electric potential energy, determined by their potential difference. The minimum distance between the masses is 10 cm, while the maximum is 30 cm due to their repulsion when the connecting string is cut. The potential energy is derived from the formula involving the charges and their distances, leading to the equation for kinetic energy, 1/2 mv^2. The initial calculation yielded a velocity of approximately 6.9 m/s, which was questioned for accuracy. It is clarified that four masses are involved, all connected, and they move away from each other upon the string being cut.
Jaccobtw
Messages
163
Reaction score
32
Homework Statement
Four masses 10g each are tied together by 10cm strings to make a square as shown. Two of the masses carry a charge of 2μC. The string between the two charged masses is cut and the system begins to move. What is the maximum speed of the masses in m/s? Do not consider gravity or friction. You can imagine the masses to be on a horizontal frictionless table.
Relevant Equations
U = kq/r
KE = 1/2mv^2
Screenshot (96).png

We can find the potential energy by finding the potential difference between the two masses. the minimum distance between the two masses is 10 cm. The maximum is 30 cm because they can be 3 string lengths apart as they repulse each other once the string is cut.

So, to get potential difference $$k_e q (\frac{1}{0.1} -\frac{1}{0.3})$$

Multiply by the other charge to get potential energy:

$$k_e q_1 q_2 (\frac{1}{0.1} -\frac{1}{0.3})$$

Set equal to 1/2 mv^2 and solve for velocity

I get about 6.9 m/s but this was wrong. Was my reasoning incorrect?
 
Physics news on Phys.org
How many masses move and how do they move relative to each other?
 
PeroK said:
How many masses move and how do they move relative to each other?
Two masses move away from each other
 
Jaccobtw said:
Two masses move away from each other
There are four masses in the problem. All tied to each other.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top