Visualizing Series Bandpass Filters: A Graphical Approach

AI Thread Summary
The discussion focuses on the graphical representation of series bandpass filters and the relevant equations involving complex impedance. It highlights the importance of understanding complex number arithmetic and circuit analysis to accurately plot theoretical values of Vout/Vin. The equation for the complex impedance of an RLC series circuit is provided, emphasizing the minimum impedance condition. Measurement discrepancies may arise due to the influence of equipment on the circuit, necessitating careful verification of component values. Familiarity with voltage dividers and related concepts is deemed essential for effective analysis.
so_gr_lo
Messages
69
Reaction score
10
Homework Statement
I am plotting Vout/Vin against frequency for a RLC series bandpass filter, where Vout is across the resistor. The resulting graph has max Vout/Vin of about 1.5, the max is supposed to be 1 in a bandpass filter. The Vout/Vin values are experimental, could a max Vout/Vin of 1.5 occur in an experiment? And what could be the reason for this?
Relevant Equations
Vin/Vout = R / (R+wL -1/wc) , where w = omega
this is the circuit
1648543482474.png


this is the theoretical graph

1648543876109.png
 
Physics news on Phys.org
Hi,

Your relevant equation is an equation with complex quantities on both sides.
(I think you switched in and out subscripts ?)

What you measure is most likely the real ratio of two amplitudes. As plotted in the theoretical graph.
For the complex impedance of the RLC series we have $$Z^2 = R^2 + \left (\omega L - {1\over \omega C}\right )^2 $$ with a minimum ##Z=R## (and ##V_{out}/V_{in}=1## ).

A measured ratio can deviate if the measurement equipment influences the circuit. So you have to check values of components and equipment.

##\ ##
 
So what equation could you use to plot theoretical values of Vout / Vin ?
 
so_gr_lo said:
So what equation could you use to plot theoretical values of Vout / Vin ?
Are you familiar with complex number arithmetic? With the representation of impedance using complex numbers? I think that is necessary to understand this without a tremendous amount of work.

Do you know about simple circuit analysis, like voltage dividers?

This is important information for us to know to help appropriately.
 
Khan Academy has some really good tutorials on these subjects.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top