What Are the Algebraic Mysteries in Energy-Momentum-Mass Relations?

  • Thread starter Thread starter Bazinga101
  • Start date Start date
  • Tags Tags
    Algebra Relations
Bazinga101
Messages
2
Reaction score
0
<<Mentor note: Please always use descriptive thread titles.>>

First of all, the title is such that it attracts most views.You see, in class our professor did some goofing around numbers and variables in the relativistic energy momentum relation:
E2=(pc)2+m02c4
Since the energy required to accelerate an object to a certain velocity is
E=m0c2/√1-v2/c2,
∴E2=m02c4/1-v2/c2
plug in the value of E2,
p2c2+m02c4=m02c4/1-v2/c2
cancel out the m02c4
so p2c2=1/1-v2/c2
since c2= E/m,
⇒Ep2/m=1/1-v2/c2\
But, p2/m = 2* K.E and since E in E=mc2 implies any form of energy,and the object gains kinetic energy through it's motion, so Ek=E
⇒E(2E)=1/1-v2/c2
⇒2E2=1/1-v2/c2
⇒E2=1/2(1-v2/c2)
⇒E2=1/2-v2/c2
⇒E=1/√2-v2/c2
and that's it.No one in the room could figure out what's wrong, but our prof. said that something is wrong, but it is our job to find it out, plus, immediately one notices that if v=c, E=1 J. WTH!
 
Last edited by a moderator:
Physics news on Phys.org
This might actually be readable if you put in some parentheses.
 
Bazinga101 said:
p2c2+m02c4=m02c4/1-v2/c2
cancel out the m02c4
so p2c2=1/1-v2/c2
That's... an interesting piece of algebra you did there.
 
Bandersnatch said:
That's... an interesting piece of algebra you did there.
Thanks Bandersnatch, i finally find out the mistake he did, and sorry for sounding stupid
 
I asked a question here, probably over 15 years ago on entanglement and I appreciated the thoughtful answers I received back then. The intervening years haven't made me any more knowledgeable in physics, so forgive my naïveté ! If a have a piece of paper in an area of high gravity, lets say near a black hole, and I draw a triangle on this paper and 'measure' the angles of the triangle, will they add to 180 degrees? How about if I'm looking at this paper outside of the (reasonable)...
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
Back
Top