- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! :)
I am given the following exercise:
Which integers of the interval: $[-100,400]$ have the identity: divided by $11$,the remainder is $2$ and divided by $13$,the remainder is $3$.
It is like that:
$[x]_{11}=[2]_{11} \Rightarrow x \equiv 2(\mod 11) \Rightarrow 11 \mid x-2 \Rightarrow x=11k+2, k \in \mathbb{Z} (*) $
Also, $[x]_{13}=[3]_{13} \Rightarrow x \equiv 3(mod 13) $
$(*) \Rightarrow 11k+2 \equiv 3(\mod 13) \Rightarrow 11k=1 (\mod 13) \Rightarrow [11] [k]=[1] \text{ in } \mathbb{Z}_{13} \Rightarrow [k]=[6] \Rightarrow k \equiv 6(\mod 13) \Rightarrow k=13l+6, l \in \mathbb{Z}$
Then, from the relation $(*)$, $x=11(13l+6)+2$ and we find the values of $x$ from the relation: $-100 \leq x \leq 400$.Instead of doing it like that:
$[x]_{13}=[3]_{13} \Rightarrow x \equiv 3(mod 13) $
$(*) \Rightarrow 11k+2 \equiv 3(\mod 13) \Rightarrow 11k=1 (\mod 13) \Rightarrow [11] [k]=[1] \text{ in } \mathbb{Z}_{13} \Rightarrow [k]=[6] \Rightarrow k \equiv 6(\mod 13) \Rightarrow k=13l+6, l \in \mathbb{Z}$
Could I do it also like that:
$x=3+13l,l \in \mathbb{Z}$,and find also the values of $x$ for which the relation $-100 \leq x \leq 400$ stand and then the solution will be the common $x$s ?
I am given the following exercise:
Which integers of the interval: $[-100,400]$ have the identity: divided by $11$,the remainder is $2$ and divided by $13$,the remainder is $3$.
It is like that:
$[x]_{11}=[2]_{11} \Rightarrow x \equiv 2(\mod 11) \Rightarrow 11 \mid x-2 \Rightarrow x=11k+2, k \in \mathbb{Z} (*) $
Also, $[x]_{13}=[3]_{13} \Rightarrow x \equiv 3(mod 13) $
$(*) \Rightarrow 11k+2 \equiv 3(\mod 13) \Rightarrow 11k=1 (\mod 13) \Rightarrow [11] [k]=[1] \text{ in } \mathbb{Z}_{13} \Rightarrow [k]=[6] \Rightarrow k \equiv 6(\mod 13) \Rightarrow k=13l+6, l \in \mathbb{Z}$
Then, from the relation $(*)$, $x=11(13l+6)+2$ and we find the values of $x$ from the relation: $-100 \leq x \leq 400$.Instead of doing it like that:
$[x]_{13}=[3]_{13} \Rightarrow x \equiv 3(mod 13) $
$(*) \Rightarrow 11k+2 \equiv 3(\mod 13) \Rightarrow 11k=1 (\mod 13) \Rightarrow [11] [k]=[1] \text{ in } \mathbb{Z}_{13} \Rightarrow [k]=[6] \Rightarrow k \equiv 6(\mod 13) \Rightarrow k=13l+6, l \in \mathbb{Z}$
Could I do it also like that:
$x=3+13l,l \in \mathbb{Z}$,and find also the values of $x$ for which the relation $-100 \leq x \leq 400$ stand and then the solution will be the common $x$s ?