MHB What Integers Between -100 and 400 Satisfy Specific Modular Conditions?

  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Integers Interval
AI Thread Summary
The discussion revolves around finding integers in the range of [-100, 400] that satisfy two modular conditions: being congruent to 2 modulo 11 and 3 modulo 13. The initial approach involves expressing the integers in terms of a variable k, leading to a system of equations. An alternative method is proposed, which simplifies the process but is deemed more labor-intensive. The solution ultimately reveals specific integers that meet the criteria, including -75, 68, 211, and 354. The conversation highlights the application of the Chinese Remainder Theorem in solving such modular equations.
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! :)
I am given the following exercise:
Which integers of the interval: $[-100,400]$ have the identity: divided by $11$,the remainder is $2$ and divided by $13$,the remainder is $3$.

It is like that:
$[x]_{11}=[2]_{11} \Rightarrow x \equiv 2(\mod 11) \Rightarrow 11 \mid x-2 \Rightarrow x=11k+2, k \in \mathbb{Z} (*) $
Also, $[x]_{13}=[3]_{13} \Rightarrow x \equiv 3(mod 13) $
$(*) \Rightarrow 11k+2 \equiv 3(\mod 13) \Rightarrow 11k=1 (\mod 13) \Rightarrow [11] [k]=[1] \text{ in } \mathbb{Z}_{13} \Rightarrow [k]=[6] \Rightarrow k \equiv 6(\mod 13) \Rightarrow k=13l+6, l \in \mathbb{Z}$
Then, from the relation $(*)$, $x=11(13l+6)+2$ and we find the values of $x$ from the relation: $-100 \leq x \leq 400$.Instead of doing it like that:
$[x]_{13}=[3]_{13} \Rightarrow x \equiv 3(mod 13) $
$(*) \Rightarrow 11k+2 \equiv 3(\mod 13) \Rightarrow 11k=1 (\mod 13) \Rightarrow [11] [k]=[1] \text{ in } \mathbb{Z}_{13} \Rightarrow [k]=[6] \Rightarrow k \equiv 6(\mod 13) \Rightarrow k=13l+6, l \in \mathbb{Z}$

Could I do it also like that:
$x=3+13l,l \in \mathbb{Z}$,and find also the values of $x$ for which the relation $-100 \leq x \leq 400$ stand and then the solution will be the common $x$s ?
 
Mathematics news on Phys.org
evinda said:
Hello! :)
I am given the following exercise:
Which integers of the interval: $[-100,400]$ have the identity: divided by $11$,the remainder is $2$ and divided by $13$,the remainder is $3$.

It is like that:
$[x]_{11}=[2]_{11} \Rightarrow x \equiv 2(\mod 11) \Rightarrow 11 \mid x-2 \Rightarrow x=11k+2, k \in \mathbb{Z} (*) $
Also, $[x]_{13}=[3]_{13} \Rightarrow x \equiv 3(mod 13) $
$(*) \Rightarrow 11k+2 \equiv 3(\mod 13) \Rightarrow 11k=1 (\mod 13) \Rightarrow [11] [k]=[1] \text{ in } \mathbb{Z}_{13} \Rightarrow [k]=[6] \Rightarrow k \equiv 6(\mod 13) \Rightarrow k=13l+6, l \in \mathbb{Z}$
Then, from the relation $(*)$, $x=11(13l+6)+2$ and we find the values of $x$ from the relation: $-100 \leq x \leq 400$.Instead of doing it like that:
$[x]_{13}=[3]_{13} \Rightarrow x \equiv 3(mod 13) $
$(*) \Rightarrow 11k+2 \equiv 3(\mod 13) \Rightarrow 11k=1 (\mod 13) \Rightarrow [11] [k]=[1] \text{ in } \mathbb{Z}_{13} \Rightarrow [k]=[6] \Rightarrow k \equiv 6(\mod 13) \Rightarrow k=13l+6, l \in \mathbb{Z}$

Could I do it also like that:
$x=3+13l,l \in \mathbb{Z}$,and find also the values of $x$ for which the relation $-100 \leq x \leq 400$ stand and then the solution will be the common $x$s ?

Hi! :o

Yes. You can also do it like that (the second way)... for this problem.

It should be clear that it is a lot more work.
And it only works because the integers have been limited to an interval that is not too big.

Are you perchance working on a chapter titled Chinese Remainder Theorem?

I suspect you will get more problems that are more complicated, so that you will have to do it the first way.
 
I like Serena said:
Hi! :o

Yes. You can also do it like that (the second way)... for this problem.

It should be clear that it is a lot more work.
And it only works because the integers have been limited to an interval that is not too big.

Are you perchance working on a chapter titled Chinese Remainder Theorem?

I suspect you will get more problems that are more complicated, so that you will have to do it the first way.

I understand!Thank you very much! ;)
Yes,I am working on a chapter with this title.. (Nod)
 
evinda said:
Hello! :)
I am given the following exercise:
Which integers of the interval: $[-100,400]$ have the identity: divided by $11$,the remainder is $2$ and divided by $13$,the remainder is $3$.

It is like that:
$[x]_{11}=[2]_{11} \Rightarrow x \equiv 2(\mod 11) \Rightarrow 11 \mid x-2 \Rightarrow x=11k+2, k \in \mathbb{Z} (*) $
Also, $[x]_{13}=[3]_{13} \Rightarrow x \equiv 3(mod 13) $
$(*) \Rightarrow 11k+2 \equiv 3(\mod 13) \Rightarrow 11k=1 (\mod 13) \Rightarrow [11] [k]=[1] \text{ in } \mathbb{Z}_{13} \Rightarrow [k]=[6] \Rightarrow k \equiv 6(\mod 13) \Rightarrow k=13l+6, l \in \mathbb{Z}$
Then, from the relation $(*)$, $x=11(13l+6)+2$ and we find the values of $x$ from the relation: $-100 \leq x \leq 400$.Instead of doing it like that:
$[x]_{13}=[3]_{13} \Rightarrow x \equiv 3(mod 13) $
$(*) \Rightarrow 11k+2 \equiv 3(\mod 13) \Rightarrow 11k=1 (\mod 13) \Rightarrow [11] [k]=[1] \text{ in } \mathbb{Z}_{13} \Rightarrow [k]=[6] \Rightarrow k \equiv 6(\mod 13) \Rightarrow k=13l+6, l \in \mathbb{Z}$

Could I do it also like that:
$x=3+13l,l \in \mathbb{Z}$,and find also the values of $x$ for which the relation $-100 \leq x \leq 400$ stand and then the solution will be the common $x$s ?

The diophantine equation You have to solve is...

$\displaystyle x \equiv 2\ \text{mod}\ 11$

$\displaystyle x \equiv 3\ \text{mod}\ 13\ (1)$

The solving procedure is illustrated in...

http://mathhelpboards.com/number-theory-27/applications-diophantine-equations-6029-post28283.html#post28283

Here is $N = n_{1}\ n_{2} = 143$ so that $N_{1}=13 \implies \lambda_{1} = 13^{- 1} \text{mod}\ 11 = 6$ and $N_{2}=11 \implies \lambda_{2} = 11^{- 1} \text{mod}\ 13 = 6$. The solution is...

$\displaystyle x = (2 \cdot 6 \cdot 13 + 3 \cdot 6 \cdot 11)\ \text{mod}\ 143 = 68\ \text{mod}\ 143\ (2)$

... so that the requested numbers are -75, 68, 211, 354...

Kind regards

$\chi$ $\sigma$
 
Hello, evinda!

I solved it with basic algebra.

Which integers on the interval: [-100,400] have the identity:
divided by 11,the remainder is 2,
and divided by 13,the remainder is 3.
We have: .\begin{Bmatrix}N &=& 11a + 2 & [1] \\ N &=& 13b + 3 & [2]\end{Bmatrix}

Equate [1] and [2]: .11a + 2 \:=\:13b + 3

. . a \:=\:\frac{13b+1}{11} \quad\Rightarrow\quad a \:=\:b + \frac{2b+1}{11}\;\;[3]

Since a is an integer, 2b+1 must be a multiple of 11.

This first happens when b = 5
. . and in general when b = 5+11k.

Sustitute into [3]: .a \:=\: (5+11k) + \frac{2(5+11k) + 1}{11}
. . which simplifies to: .a \:=\:13k+6

Substitute into [1]:
. . N \:=\:11(13k+6) + 2 \quad\Rightarrow\quad N \:=\:143k + 68

For k = 1,2, we have: .N \:=\:211,\,354
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top