rayman123
- 138
- 0
Homework Statement
Find a Lapalce transformation of
cos^2t
Homework Equations
The Attempt at a Solution
started like this
\mathcal{L}(s)=\int_0^{\infty} e^{-st}\cos^2t\mbox{d}t=\frac{1}{2}\int_0^{\infty}e^{-st}(\cos 2t+1)\mbox{d}t=\frac{1}{2}\int_0^{\infty}e^{-st}\cos 2t\mbox{d}t+\frac{1}{2}\int_0^{\infty}e^{-st}\mbox{d}t=...
but i wonder how much the last integral is going to be?