What Physical Meaning Underlies the Non-Divergence of the Einstein Tensor?

  • Thread starter Thread starter snoopies622
  • Start date Start date
  • Tags Tags
    Einstein Tensor
snoopies622
Messages
852
Reaction score
29
What physical meaning can be ascribed to the non-divergence of the Einstein tensor? I find it counterintuitive since I associate divergence with field sources (like the electrical field of a proton) and obviously a gravitational field has a source. Is there a parallel with Newton's formulation of gravity that might be instructive?
 
Last edited:
Physics news on Phys.org
snoopies622 said:
What physical meaning can be ascribed to the non-divergence of the Einstein tensor? I find it counterintuitive since I associate divergence with field sources (like the electrical field of a proton) and obviously a gravitational field has a source. Is there a parallel with Newton's formulation of gravity that might be instructive?
Since the Einstein tensor is proportional to the stress-energy-momentum tensor, T it means that energy and momentum is conserved since div T = 0. This holds true even when the cosmological constant is non-zero.

Pete
 
snoopies622 said:
What physical meaning can be ascribed to the non-divergence of the Einstein tensor? I find it counterintuitive since I associate divergence with field sources (like the electrical field of a proton) and obviously a gravitational field has a source. Is there a parallel with Newton's formulation of gravity that might be instructive?

You can also see them as constraints on the equations of motion. Intuïtively you can understand them as follows: in general relativity one wants to solve for the metric tensor, which is symmetric and thus can have 10 independent entries ( n*(n+1)/2 ). However, one is free to choose the coordinates, and this gives some freedom in your equations ( which can be seen as a gauge-freedom ). The consequences of this can be calculated to be the Bianchi-identities, which give that the Einstein tensor is divergence-free. Note that this is an identity rather than a symmetry; the description of physics doesn't depend on your coordinates.

A parallel with Newton's formulation is a little tricky; but you have to be aware of the fact that the Einstein tensor already contains second order derivatives of the metric, just like Poisson's equation is a second order differential equation of the classical gravitational field ! A sensible parallel would appear to me that due to constraints on the gravitational field the third order divergence of the classical gravitational field would be zero.
 
So Einstein created the stress-energy tensor first, then made G_{ab} to match it?
 
I asked a question here, probably over 15 years ago on entanglement and I appreciated the thoughtful answers I received back then. The intervening years haven't made me any more knowledgeable in physics, so forgive my naïveté ! If a have a piece of paper in an area of high gravity, lets say near a black hole, and I draw a triangle on this paper and 'measure' the angles of the triangle, will they add to 180 degrees? How about if I'm looking at this paper outside of the (reasonable)...
The Poynting vector is a definition, that is supposed to represent the energy flow at each point. Unfortunately, the only observable effect caused by the Poynting vector is through the energy variation in a volume subject to an energy flux through its surface, that is, the Poynting theorem. As a curl could be added to the Poynting vector without changing the Poynting theorem, it can not be decided by EM only that this should be the actual flow of energy at each point. Feynman, commenting...
Back
Top