- #36
member 428835
Ahhh this is related to covariant and contravariant vectors, right? I think I've done this before but it was about a year ago. At any rate, we have $$A = \frac{g_{zz}}{-g_{\theta z}^2+g_{zz}g_{\theta\theta}}\\Chestermiller said:Now its your turn. Please solve Eqns. 4 for the coefficients A and B in terms of ##g_{\theta \theta}##, ##g_{\theta z}##, and ##g_{zz}##, and then write out the equation for ##\hat{a}^{\theta}## in terms of these.
B = \frac{g_{\theta z}}{g_{\theta z}^2-g_{zz}g_{\theta\theta}}\implies\\
\hat{a}^\theta = \frac{g_{zz}}{-g_{\theta z}^2+g_{zz}g_{\theta\theta}}\hat{a}_\theta+\frac{g_{\theta z}}{g_{\theta z}^2-g_{zz}g_{\theta\theta}}\hat{a}_z.$$
Sorry my response took so long. I should now be able to respond much faster (very busy week for me).