- #106
- 23,583
- 5,819
So you are saying you have a trough with a very viscous fluid flowing down the trough? And no new fluid is being introduced on the high end?joshmccraney said:1. I didn't use continuity in differential form (at least not ##\nabla \cdot \vec u = 0##). I used a control volume approach. Should I not have?
2. I was using cylindrical coordinates (notice my arguments for the Laplacian). But I ended up using just the ##z## direction.
3. Is the volume constant? I suppose we could consider a spreading droplet of water. I was imagining a set up where we could drain fluid at some downstream point, but perhaps we can talk more on this later?
4. Yea, I definitely was assuming creeping flow, and neglected flow in ##r## and ##\theta##.
5. I'd like to learn this! Ok, so what's next? Shall I give it another go or would you like to take over?