Where does the equation C=2*sqrt(km) for Critical Damping come from?

AI Thread Summary
The equation C=2*sqrt(km) for critical damping is derived from the analysis of damped harmonic oscillators, specifically in the context of a ruler cantilever experiment. Critical damping occurs when the damping force is precisely balanced to prevent oscillation, allowing the system to return to equilibrium in the shortest time possible. The discussion highlights the mathematical approach to solving the equation of motion for a damped spring system and the significance of the parameter values in determining the system's behavior. Resources such as college-level physics textbooks provide foundational insights into critical damping and its derivation. Understanding this equation is essential for accurately analyzing damping in mechanical systems.
physics51
Messages
1
Reaction score
0
Homework Statement
what's the background on this equation, I can't find anything about I, what can you guys tell me about it related to damping, when to use it, how to derive it, what it means, etc.? Anything is useful!! Thank you!!
Relevant Equations
C= 2 sqrt km
Im using this equation to find the damping from a ruler cantilever experiment. Any information about what critical damping really means and how it reflects in a ruler cantilever is also really helpful. Thank you again.
 
Last edited:
Physics news on Phys.org
From the context I guess that you are discussing a damped spring pendulum with the equation of motion
$$m \ddot{x}=-C \dot{x} - k x.$$
To solve this equation a nice trick is to make the substitution
$$x(t)=\exp(\lambda t) y(t).$$
Plug this into the equation and check that then ##y## fulfills
$$m \ddot{y}+(C+2 \lambda m) \dot{y} + [k+\lambda(C+\lambda m)]y=0.$$
Now make ##\lambda=-C/(2m)## to get rid of the term with ##\dot{y}##. Then the equation of motion for ##y## simplifies to
$$m\ddot{y} + \left (k-\frac{C^2}{4m} \right) y=0.$$
Now discuss what happens for the different values of the expression in the bracket,
$$k-\frac{C^2}{4m}<0, \quad k-\frac{C^2}{4m}=0, \quad k-\frac{C^2}{4m}>0.$$
 
For an ODE with constant coefficients I’d just make the ansatz ##x(t) = A \exp(\lambda t)## and solve the characteristic equation, but any way that works works.
 
Well, then you've the trouble with exactly the case of critical damping ;-).
 
physics51 said:
what's the background on this equation, I can't find anything about I,
Where did you look? Most college-level introductory physics textbooks will have a discussion of critical damping and will derive this formula.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top