MHB Which Interval Shows f' Always Increasing?

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
View attachment 9411image due to macros in overleaf

well apparently all we can do is solve this by observation
which would be the slope as x moves in the positive direction
e appears to be the only interval where the slope is always increasing
 

Attachments

  • Capture.PNG
    Capture.PNG
    4.2 KB · Views: 149
Physics news on Phys.org
karush said:
image due to macros in overleaf

well apparently all we can do is solve this by observation
which would be the slope as x moves in the positive direction
e appears to be the only interval where the slope is always increasing

You have not correctly understood or interpreted the question. e is a point, not an interval.

"always increase" doesn't mean anything for a point. Either it's increasing at that point or it isn't.
 
Ok good point

Well at point e the slope is increasing
 
At point a the function is decreasing so f' is negative, not positive. At point b there is a cusp so f' does not even exist there. At point c the function is increasing so f' is positive but the graph is "flattening" so f' is decreasing, not increasing. At point d the function is decreasing so f' is negative, not positive. At point e the function is increasing so f' is positive and the graph is getting steeper so f' is increasing. Yes, e is the correct answer.
 
For original Zeta function, ζ(s)=1+1/2^s+1/3^s+1/4^s+... =1+e^(-slog2)+e^(-slog3)+e^(-slog4)+... , Re(s)>1 Riemann extended the Zeta function to the region where s≠1 using analytical extension. New Zeta function is in the form of contour integration, which appears simple but is actually more inconvenient to analyze than the original Zeta function. The original Zeta function already contains all the information about the distribution of prime numbers. So we only handle with original Zeta...
Back
Top