- #106
atyy
Science Advisor
- 15,169
- 3,380
tom.stoer said:Thanks Marcus!
So let's come back to Gross' question - and to my last two topics (again slightly modified) -
- what string theory really is
- what the fundamental principles are and how the final theory will look like (in terms of strings or other fundamental degrees of freedom)
- what the major obstacles (inherent to string theory) are preventing us from identifying these underlying principles and constructing this unique framework or theory
I think there are people looking for these answers, but it's hard.
http://motls.blogspot.com/2009/09/murray-gell-mann-80th-birthday-and.html reporting on Gell-Mann's comments:
"I am puzzled by what seems to me the paucity of effort to find the underlying principle of superstring theory-based unified theory. Einstein didn’t just cobble together his general relativistic theory of gravitation. Instead he found the principle, which was general relativity, general invariance under change of coordinate system. Very deep result. And all that was necessary then to write down the equation was to contact Einstein’s classmate Marcel Grossmann, who knew about Riemannian geometry and ask him what was the equation, and he gave Einstein the formula. Once you find the principle, the theory is not that far behind. And that principle is in some sense a symmetry principle always.
Well, why isn’t there more effort on the part of theorists in this field to uncover that principle? Also, back in the days when the superstring theory was thought to be connected with hadrons rather than all the particles and all the forces, back in that day the underlying theory for hadrons was thought to be capable of being formulated as a bootstrap theory, where all the hadrons were made up of one another in a self-consistent bootstrap scheme. And that’s where superstring theory originated, in that bootstrap situation. Well, why not investigate that further? Why not look further into the notion of the bootstrap and see if there is some sort of modern symmetry principle that would underlie the superstring-based theory of all the forces and all the particles. Some modern equivalent of the bootstrap idea, perhaps related to something that they call modular invariance. Whenever I talk with wonderful brilliant people who work on this stuff, I ask what don’t you look more at the bootstrap and why don’t you look more at the underlying principle..."
http://physics.aps.org/viewpoint-for/10.1103/PhysRevLett.103.081301 "In a wider perspective, what do these results mean for superstring theory and its claim to be the sole pretender to the throne of a perturbatively consistent extension of Einstein’s theory? String theory differs from field theory in that, on top of its pointlike excitations, it has an infinite tower of massive states corresponding to the quantized vibrational modes of the string. However, a closer look reveals that its (still conjectural) finiteness hinges not so much on the presence of these extra states, but rather on a new type of symmetry (called modular invariance), which has no field theory analog. This suggests that the new symmetry that may ultimately explain finiteness must act in a way very different from known realizations of spacetime and internal symmetries. Accordingly, we should view the coexistence of several possibly finite candidate theories only as a first step towards the future construction of an underlying theory of quantum gravity, where classical space and time are only emergent concepts, and which would also be viable nonperturbatively."
Nicolai and collaborators have a very interesting line of work - actually, it's not clear to me if this symmetry is just some there in some special limit, or a more general principle - I find it interesting for its relation to quantum chaos - and the Riemann hypothesis:
http://arxiv.org/abs/hep-th/0207267
http://arxiv.org/abs/hep-th/0212256
http://arxiv.org/abs/0912.0854
Last edited by a moderator: