- #1
Living_Dog
- 100
- 0
From Box 3.3, p. 85:
Since [tex]
S^{\alpha}_{\phantom{\alpha}\beta\gamma} = S(\omega^\alpha, e_\beta, e_\gamma)
[/tex]
and
since S[tex]=S^{\alpha}_{\phantom{\alpha}\beta\gamma}e_\alpha\otimes\omega^\beta\otimes\omega^\gamma[/tex]
is it then true that
S[tex]=S(\omega^\alpha, e_\beta, e_\gamma)e_\alpha\otimes\omega^\beta\otimes\omega^\gamma\ ?[/tex]
Also, to get a new tensor from an old tensor, one of the techniques is to contract two of the indexes with each other. Is this another form of contraction, namely:
[tex]T_\gamma = S^{\alpha}_{\phantom{\alpha}\alpha\gamma} = S^{\alpha}_{\phantom{\alpha}\beta\gamma}\eta^{\beta}_{\phantom{\beta}\alpha} = S^{\alpha}_{\phantom{\alpha}\beta\gamma}\eta^{\beta\lambda}\eta_{\lambda\alpha}\ ?[/tex]
Finally, why is the 1st term on the rhs of this equation transposed??
[tex]\nabla([/tex]R[tex]\otimes[/tex]M[tex]) = (\nabla[/tex]R[tex]\otimes[/tex]M[tex])^T\ +\ [/tex]R[tex]\otimes\nabla[/tex]M
Since [tex]
S^{\alpha}_{\phantom{\alpha}\beta\gamma} = S(\omega^\alpha, e_\beta, e_\gamma)
[/tex]
and
since S[tex]=S^{\alpha}_{\phantom{\alpha}\beta\gamma}e_\alpha\otimes\omega^\beta\otimes\omega^\gamma[/tex]
is it then true that
S[tex]=S(\omega^\alpha, e_\beta, e_\gamma)e_\alpha\otimes\omega^\beta\otimes\omega^\gamma\ ?[/tex]
Also, to get a new tensor from an old tensor, one of the techniques is to contract two of the indexes with each other. Is this another form of contraction, namely:
[tex]T_\gamma = S^{\alpha}_{\phantom{\alpha}\alpha\gamma} = S^{\alpha}_{\phantom{\alpha}\beta\gamma}\eta^{\beta}_{\phantom{\beta}\alpha} = S^{\alpha}_{\phantom{\alpha}\beta\gamma}\eta^{\beta\lambda}\eta_{\lambda\alpha}\ ?[/tex]
Finally, why is the 1st term on the rhs of this equation transposed??
[tex]\nabla([/tex]R[tex]\otimes[/tex]M[tex]) = (\nabla[/tex]R[tex]\otimes[/tex]M[tex])^T\ +\ [/tex]R[tex]\otimes\nabla[/tex]M
Last edited: