- #36
Adrian07
- 84
- 1
Have been looking at the special relativity link in post 12 particlarly the diagram at the end.
Quote The observer on the spaceship will measure the blip of light to be traveling at c relative to the spaceship, the observer on the ground will measure the same blip to be traveling at c relative to the ground. That is the unavoidable consequence of the Theory of Relativity.
While the speed of light remains the same the measured speed must be different as it would take longer to travel between the sensors.
If we add to the diagram the spaceship moving at c and a blip of light fired from the back of the ship towards the front as it passes the stationary light source, from outside both blips move at the same speed, inside the blip would seem as not moving, if it was seen as moving inside the ship it would be seen as moving at a different speed to the outside one from outside the ship, so how do we keep the measured speed of light as constant?
Please keep replies in laymans terms as simple as possible please.
Quote The observer on the spaceship will measure the blip of light to be traveling at c relative to the spaceship, the observer on the ground will measure the same blip to be traveling at c relative to the ground. That is the unavoidable consequence of the Theory of Relativity.
While the speed of light remains the same the measured speed must be different as it would take longer to travel between the sensors.
If we add to the diagram the spaceship moving at c and a blip of light fired from the back of the ship towards the front as it passes the stationary light source, from outside both blips move at the same speed, inside the blip would seem as not moving, if it was seen as moving inside the ship it would be seen as moving at a different speed to the outside one from outside the ship, so how do we keep the measured speed of light as constant?
Please keep replies in laymans terms as simple as possible please.