Work done on an Object - Pulling a wagon while lifting up at an angle

AI Thread Summary
Juri is pulling a wagon with a force of 200 Newtons at a 35-degree angle over a distance of five kilometers. An initial calculation using the formula W = F*d*cos(theta) resulted in 819.2 kJ, but the provided solution incorrectly used W = F*d*sin(theta), yielding 573.6 kJ. The discussion centers on why the cosine function is appropriate for calculating work in this scenario, as it accounts for the horizontal component of the force. Participants agree that the cosine function should be used, highlighting the error in the official solution. The conversation emphasizes the importance of accuracy in both calculations and significant figures.
jigsaw21
Messages
20
Reaction score
0
Homework Statement
This question is asking to find the work done on an object being pulled at an angle.
Relevant Equations
W = F*d*cos theta
Juri is tugging her wagon behind her on the way to... wherever her wagon needs to go. The wagon repair shop. She has a trek ahead of her--five kilometers--and she's pulling with a force of 200 Newtons. If she's pulling at an angle of 35 degrees to the horizontal, what work will be exerted on the wagon to get to the repair shop?

...

Attempted Solution: I simply plugged in the values given into the formula above for Work which is F*d*cos (theta) due to the question saying that she was pulling at an angle of 35 degrees to the horizontal. This gave me an answer of 819.2 kJ. However, in the solution it is saying the appropriate formula should be W = F*d*sin (theta) instead of cos (theta), and thus the solution is 573.6 kJ.

But my question is why is sin(theta) used instead of cos(theta) for the formula . I thought that if the direction the wagon is being pulled needs to be parallel to the horizontal component of the Force, which should be cos (theta)?

I'm just curious if anyone could help me see why W = F*d*sin(theta) is the appropriate formula for this example and not W = F*d*cos(theta).

I appreciate any response or feedback.
 
Last edited by a moderator:
Physics news on Phys.org
jigsaw21 said:
Homework Statement:: This question is asking to find the work done on an object being pulled at an angle.
Relevant Equations:: W = F*d*cos theta

Juri is tugging her wagon behind her on the way to... wherever her wagon needs to go. The wagon repair shop. She has a trek ahead of her--five kilometers--and she's pulling with a force of 200 Newtons. If she's pulling at an angle of 35 degrees to the horizontal, what work will be exerted on the wagon to get to the repair shop?

...

Attempted Solution: I simply plugged in the values given into the formula above for Work which is F*d*cos (theta) due to the question saying that she was pulling at an angle of 35 degrees to the horizontal. This gave me an answer of 819.2 kJ. However, in the solution it is saying the appropriate formula should be W = F*d*sin (theta) instead of cos (theta), and thus the solution is 573.6 kJ.

But my question is why is sin(theta) used instead of cos(theta) for the formula . I thought that if the direction the wagon is being pulled needs to be parallel to the horizontal component of the Force, which should be cos (theta)?

I'm just curious if anyone could help me see why W = F*d*sin(theta) is the appropriate formula for this example and not W = F*d*cos(theta).

I appreciate any response or feedback.
It's a mistake, You are correct. Cos(35º) should be used.

Also, note the data are given to only 1 or 2 significant figures. I'd round the answer to 2 significant figures.

The fact that the 'official' solution is both wrong and given to 4 significant figures isn't inspiring!
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top