- #1
aljan9559
- 2
- 1
- TL;DR Summary
- My question is about the relation between the Work-Kinetic (W = change in PE) and Work-Potential theorem (W = change in KE). Does the change in KE and change in PE in the same scenario result in the same work value?
In a scenario of a free-falling object in a vacuum on earth, the object will be acceleration towards the earth. According to the theorem of Work-Kinetic and Work-Potential:
* Since the object is accelerating towards the earth, we know that the object's Kinetic energy is increasing because the velocity is increasing. According to the Work-Kinetic theorem, there is positive work done on the object.
W = KE2 - KE1, and KE2 > KE1 therefore, W is positive.
* Now, my question is if we were to apply the same concept on the Work-Potential theorem with the exact same scenario, would the work be positive as well? When thinking about it, the free-falling object in a vacuum, by time, is getting closer to Earth and therefore the height is decreasing. So, W = PE2 - PE1, and PE2 < PE1 and that would result in work (W) to be (-) negative. Why is that? Isn't supposed to be that the work is positive in that scenario, why are the results different when using the Work-kinetic theorem as opposed to using the Work-Potential theorem to find the work?
Thanks, I appreciate your time.
* Since the object is accelerating towards the earth, we know that the object's Kinetic energy is increasing because the velocity is increasing. According to the Work-Kinetic theorem, there is positive work done on the object.
W = KE2 - KE1, and KE2 > KE1 therefore, W is positive.
* Now, my question is if we were to apply the same concept on the Work-Potential theorem with the exact same scenario, would the work be positive as well? When thinking about it, the free-falling object in a vacuum, by time, is getting closer to Earth and therefore the height is decreasing. So, W = PE2 - PE1, and PE2 < PE1 and that would result in work (W) to be (-) negative. Why is that? Isn't supposed to be that the work is positive in that scenario, why are the results different when using the Work-kinetic theorem as opposed to using the Work-Potential theorem to find the work?
Thanks, I appreciate your time.