##\tau## = 0.5*mg
##\alpha##= (0.5mg)/##mr^2##
This is what I'm finding difficult to understand, if a particle is in linear translation, how can it have angular acceleration. If by calculation, angular acceleration is non-zero, then shouldn't the body must move in a circular path with...
Hi,
I have this scheme, in which there are 3 segments:
- I is coaxial to c axis and free to rotate in the origin. Length d1
- II is coaxial with a axis and free to rotate around c axis. There a fixed angle θ between a and c axis. Length d2
- III is welded to II, it's the PM segment. α is fixed...
So we know that the initial intertia of the merry go round is 250 kg m^2 and its angular speed is 10 rpm. MGRs angular momentum would be L=Iw=250(10)=2500kg m^2 rpm.
We know the mass if the child is 25kg, and the child's linear velocity is 6m/s. We convert linear to angular w= v/r = 6/2 =...
Hi, I have the following problem:
A homogeneous disc with M = 1.78 kg and R = 0.547 m is lying down at rest on a perfectly polished surface. The disc is kept in place by an axis O although it can turn freely around it.
A particle with m = 0.311 kg and v = 103 m/s, normal to the disc's surface at...
I know that the force must be a central force and that under central forces, angular momentum is conserved. But I am unable to mathematically show if the angular and linear momentum are constants.
Radial Momentum
##p=m\dot r = ma\dot \theta=ma\omega##
Angular Momentum
##L=mr^2\dot\theta =...
The hint says to use the moment of inertia of the rod, however i have not covered this on my course and I don't know what it is.
After googling moment of inertia of a rod I found that it is a quantity expressing a body's tendency to resist angular acceleration, and for a rod I=1/3ML^2.
So...
We want to show that ##[\hat{ \vec H}, \hat{ \vec L}_T]=0##. I made a guess: we know that ##[\hat{ \vec H}, \hat{ \vec L}_T]=[\hat{ \vec H}, \hat{ \vec L}] + \frac 1 2 [\hat{ \vec H}, \vec \sigma]=0## must hold.
I have already shown that
$$[\hat{ \vec H}, -i \vec r \times \vec \nabla]= -...
I'm sure I've read somewhere that Jupiter has 99% of the solar system's angular momentum, which shouldn't be the case.
However, I can't find a source for this, and any search online for the topic doesn't bring up any science sites.
Did I mis-remember?
Hi,
In my memories there's the information that in a O shaped mounting, the bearings will work in diagonal (the forces will be transmitted following that path).
But in many drawings I can see the presence of a spacer between internal rings. Is it necessary since no force should be transmitted to it?
1)Starting at rest, he brings the weights into his chest. His angular velocity increases.
2)A friend throws a third weight so that the student catches it in one of his outstretched hands. No matter what the direction of the throw, the student's angular velocity decreases.
3) Starting with...
Okay so I actually have the answer because my teacher basically just gave it to me, but I would really like to know why I was even wrong in the first place. Here's my steps:
1. Knowing the momentum transfer per unit area is described by: 1/A dp/dt = S/c. I can begin by relating some known...
I am confused with the following two questions:
1. A particle moves under the influence of a central force directed toward a fixed origin ##O##. Explain why the particle's angular momentum about ##O## is constant.
2. Consider a planet orbiting the fixed sun. Take the plane of the planet's...
Wikipedia says that they are the equivalents of momentum and force in rotational motion but I don't understand why this comparison is possible. The torque's dimension is N*m it seems like energy. What is this energy? Why angular momentum is not mass times angular velocity?
Say we have a motor attached to the Earth with gear A, that drives identically sized gear B. Gear B spins on its own axis and but is also attached to ground. Torque between gears is equal.
Technically each gear has equal but opposite AM right, but If I take Earth into account, how is Ang...
Okay so what I've done;
I've put the diammter d = 1m as r = 1m
The time interval of 4s is t = 4s
and the angular velocitys as;
ω1 = 20 rad/s
ω2 = 40 rad/s
Now to get the accelaration. Angular acceleration can be split into two parts tangetial acceleration and radial acceleration
What I...
In Chapter 4, derivation 15 of Goldstein reads:
"Show that the components of the angular velocity along the space set of axes are given in terms of the Euler angles by
$$\omega_x = \dot{\theta} \cos \phi + \dot{\psi} \sin \theta \sin \phi,
\omega_y = \dot{\theta} \sin \phi - \dot{\psi} \sin...
I am writing an article about the Hubble Tension and when I was looking through the angular diameter distance I get confused over something.
In many articles the angular diamater distance to the LSS defined as the
$$D_A^* = \frac{r_s^*}{\theta_s^*}$$ where ##r_s^*## is the comoving sound...
See attached. You can see how the car as a whole conserves angular momentum with earth. Car pushes back, Earth moves back and rotates, car accelerates forward.
https://www.animations.physics.unsw.edu.au/jw/momentum.html
However, the ground puts a friction force on the front non-driving wheel...
I don’t understand how energy is conserved here. The energy of the atom when n=5 is -.544eV. The energy of the photon is 1.14eV. After release, the energy of the atom is -.544 - 1.14 = 1.68eV. Using this value, I get n = 2.67, not an integer, so n = 3 and the atom has energy = -1.51 eV. I...
I looked in the instructor solutions, which are given by:
But I don't quite understand the solution, so I hope you can help me understand it.
First. Why do we even know we are working with wavefunctions with the quantum numbers n,l,m? Don't we only get these quantum numbers if the particles...
Okay, i know that as a ball collides with a pivoting rod on an axis, the ball has angular momentum. Therefore after the collision, the ball is stopped or slowed, and the rod swings.
The ball provides a force and torque to the rod. But if I isolate the ball, isn't the only thing acting on the...
hello I would like some help with the first part of this homework.
for the moment i have done this:
E initial=m*g*h
Efinal= 1/2 m*v ^ 2+1/2I*ω ^ 2
Ei=m*g*h+1/2I*ω ^ 2
Ef=1/2*m*v ^ 2
my doubt is with the potential energy since it confuses me when there is or not...
Is it correct to say that that τ=0 since r has the same directacion as F??
and for \vec{L} que need to find \vec{p}
So I thought solving this dif equation
## \int dp/dt =−kq/r^2 +β^4/r^5##
Do you agree in the path I am going?
I have the following equation,
$$ C_\ell(z,z') = \int_0^\infty dkk^2 j_\ell(kz)j_\ell(kz')P(k),$$
where $$j_\ell$$ are the spherical Bessel functions.
I would like to invert this relation and write P(k) as a function of C_l. I don't know if this is a well known result, but I couldn't find...
I have seen the solution and understand it. The solution defines θ to be the angle between the falling rod and the table. It then equates initial PE to the final (PE+KE) where the final PE=0 and the final KE to be (1/2) Iω2+ (1/2) ma2ω2 to finally obtain ω = √(3g/2a)
But i would like to know...
I was first wondering wether we can solve this question by applying conservation or energy or not but after googling it I found that we can't apply conservation of energy since there will be some energy lost in this case. I don't know how this energy is getting lost.
My second doubt was if we...
and this is my solution
for question (d), it may seems that $$R=(k)/(k-m\omega^2)R_0$$ so that $$\omega ≠ \omega_i =√(k/m)$$
but $$\omega_c <\sqrt{k/m}$$ is always true, ##\omega_i## corresponds to the limit case when ##F_max## is infinitely large
Besides, I don't know other Physics prevents...
Summary:: Would energy method give us a different answer from conservation of angular momentum?
Hello,
I do not know how to type equations here. So, I typed my question in Word and attached it here. Please see photos.
Note: This question is not a homework. I did not find it in textbooks or...
The Wikipedia page for angular velocity makes a big fuss over "spin" and "orbital" angular velocities, but I have checked through Gregory and Morin's textbooks on classical mechanics and haven't found any reference to them at all. They just work with a single quantity, the angular velocity...
This is a semantic question, without any implications really, but I wondered if someone could check if I understand this correctly? The angular velocity ##\vec{\Omega}## of a frame ##\mathcal{F}## with respect to another frame ##\mathcal{F}'## is defined such that, for any vector...
In which coordinate system the components of angular momentum are quantized? Better to say, if we can select the coordinate system arbitrarily, how the components of angular momentum, say z-component, are always ##L_z=m\hbar##?
Pretty much in a nutshell... fielded a question about how spin affects electron positron annihilation... ie do the spins have to be opposite in order to conserve angular momentum for two-photon annihilation to happen?
Intuitively I figured that looks reasonable ... but decided to check, and...
I was watching the above video which is part of a series explaining the mechanics behind a gyroscope. In the video the author explains the mechanics of the gyroscope when stationary (the disc is not rotating). Here he derives a result that the angular acceleration is g/r which is non zero...
I first tried to get the solution by conserving the rotational kinetic energy and got ##\omega'=\frac2{\sqrt5} \omega##.
But, it was not the correct answer. Next I tried by conserving the angular momentum and got ##\omega'=\frac 45 \omega##, which is the correct answer.
Why is the rotational...
My solutions (attempts) :
a> w=v/r | r=6.35x10^6m | therefore V=7.04x10^-5 m/s
b> speed of rotation is faster at the equator than the pole as w=v/r. As w remains constant, as r increases towards the pole V has to decrease.
c> F = W - R
d> Stuck here. I presume that I have to use the equation...
Angular velocity is the degrees by which something rotates over a time period. If I have an angular velocity in one direction and I resolve it into its components, its components would obviously be of lesser value. Here's what I don't get. When I imagine this scenario, I see that the thing...
Answers are the following :
(i) v=(2cost)i - (2sint)j -(1/2)k
(ii)2.06m/s
(iii)2m/s^2 horizontally towards the vertical axis, making an angle of pi/4 with both the I and j axes.
In this article it discusses the generation of something called super chiral light and claims with metamaterials they can make it have very high angular momentum like l=100. What does that really mean? How does that relate in magnitude to the normally computed linear momentum of a photon p=h/λ...
I am confused because the question implies that I need to do some sort of calculation with Kepler's law. I got
##r+d = \sqrt[3]{\frac{T^2 GM}{4 \pi^2} } ##
But don't understand why I need this, since I already have the distance and the angular diameter should be ##\arctan (2R/d)## I think I...
Hello,
I have this i am learning. I have been trying to find information online but have struggled to find anything which helps me. YouTube usually has good videos, but doesn't seem to on this. This is one topic i have never learned before. But keen to.
I was hoping someone could help me...
Further given:
- every beam is infinite stiff
- pulleys are massless
- cables don't stretch, no slip, and frictionless.
-Every pulley has a diameter D except pulley Q. Pulley Q has diameter 0.5*D
So what I don't understand is how to calculate/determine the velocity at R and S. Can someone help...
IS my solution right? Comparing with the other solutions, the answer just exchange the signals, i don't know why,
THats what ifound.
And here is the three equations:
{i use the point which occurs the collision}
Lo = Lf >>
0 = Iw + M*Vcm(block)
Eg = ct>
mvo² = mvf² + MVcm² + Iw²
I = ml²/3...