Calculus, originally called infinitesimal calculus or "the calculus of infinitesimals", is the mathematical study of continuous change, in the same way that geometry is the study of shape and algebra is the study of generalizations of arithmetic operations.
It has two major branches, differential calculus and integral calculus; the former concerns instantaneous rates of change, and the slopes of curves, while integral calculus concerns accumulation of quantities, and areas under or between curves. These two branches are related to each other by the fundamental theorem of calculus, and they make use of the fundamental notions of convergence of infinite sequences and infinite series to a well-defined limit.Infinitesimal calculus was developed independently in the late 17th century by Isaac Newton and Gottfried Wilhelm Leibniz. Today, calculus has widespread uses in science, engineering, and economics.In mathematics education, calculus denotes courses of elementary mathematical analysis, which are mainly devoted to the study of functions and limits. The word calculus (plural calculi) is a Latin word, meaning originally "small pebble" (this meaning is kept in medicine – see Calculus (medicine)). Because such pebbles were used for counting (or measuring) a distance travelled by transportation devices in use in ancient Rome, the meaning of the word has evolved and today usually means a method of computation. It is therefore used for naming specific methods of calculation and related theories, such as propositional calculus, Ricci calculus, calculus of variations, lambda calculus, and process calculus.
Hi I'm having troubles with integration specially by substitution, I'm going to read a calculus textbook and i need recommendations of books with a good treatment on the different techniques of integration. I'd like a book with good exercises for self study and a exposure to integration of...
Question:
Diagram:
So the common approach to this problem is using polar coordinates.
The definition of infinitesimal rotational inertia at O is ##dI_O=r^2\sigma\, dA##. Therefore the r. inertia of the triangle is
$$I_O=\int_{0}^{\pi/3}\int_{0}^{\sec\theta}r^2r\,drd\theta$$
whose value is...
I was walking around with my head in the clouds and suddenly I wondered if a smart person, say, a philosopher, could start at the full monster of real analysis instead of elementary calculus.
Would there be any hope for this unfortunate soul? What are your opinions and why?
Or if you feel this...
Hi, I'm reading the volume 1 of "Introduction to calculus and analysis" by Courant and Fritz but the problems are hard for me, i understand what he say but i can't solve many problems of the chapter one. It's normal or should i try with other book?
Hello everyone.
I'm about to take Calc 3 next semester and am looking for a rigorous book to work with on multivariable calculus. I've gone through Spivak's "Calculus" from cover to cover and am hoping to find something with the same degree of rigor, if possible, and preferably with a solution...
Majoring in electrical engineering imply studying Griffiths book on electrodynamics, so I have begun reading its first chapter, which is a review of vector calculus. A list of vector calculus identities is given, and I would like to derive each one, with one of them being ##\nabla \cdot (A...
I have a question :
If we consider the change in g due to distance from the Earth core; then
y=distance from earth’s core
t=time
G=gravitation constant
M=Earth’s mass
k=GM
$$y^2(t)=\frac{k}{y(t)^2}$$
If we consider air resistive force as proportional to speed squared, then:
m=falling object...
I was recently studying the pressure gradient force, and I found it interesting (though this may be incorrect) that you can use a Taylor expansion to pretend that the value of the internal pressure of the fluid does not matter at all, because the internal pressure forces that are a part of the...
Hi, I have a course on calculus of variations and Sturm Liouville theory and was wondering if anyone had any good textbook suggestions? If they had questions and solutions it would be a bonus! I have put all the subtopics of the course below.
Calculus of variations
Variation subject to...
Hello.Questions: How tensor operations are done?Like addition, contraction,tensor product, lowering and raising indices. Why do we need lower and upper indices if we want and not only lower? Is a tensor a multilinear mapping?Or a generalisation of a vector and a matrix? Could a tensor be...
I've been studying calculus A and B on and off over the last ten years, and I'm starting to learn calculus again for fun as soon as I can get my hands on a textbook. I was wondering if multivariable calc is as fun as A and B have been so far.
I just finished multivariate calculus (without any linear algebra experience yet) and I am seeking out a path to understanding General Relativity. I am wondering what are the mathematical fields after multivariate calculus that I need to master before beginning to understand GR, and what...
i think solution with récurrence
for n=1 then 1=2¨¨^0(2x0 +1) true
suppose that n=2¨^p(2q+1) is true shows that n+1=2^p( 2q +1)?
n+1=2¨^p(2q+1) +1 ⇒ ??
From Wikipedia:
"In 1727, [Euler] first entered the Paris Academy Prize Problem competition; the problem that year was to find the best way to place the masts on a ship."
Does anyone know how he did this?
Is there an on-line paper? (But what that is accessible with today's knowledge).
And by...
I know some multivariable calculus, I just want someone to walk me through the integration deriving the mass element dM and the integration of thin rings composing the hollow sphere. It would also be nice if you could show me doing it one way using the solid angle and one way without using the...
If f'(x) were a simpler function like f'(x) = cos(x) I would say
f(x) = sin(x) + C and then evaluate C by knowing that 2 = sin(1) + C and then C would equal 2-sin(1)
the f(x) = sin(x) + 2 - sin(1),
f(0) = sin(0) + 2 - sin(1) = 0 + 2 -.841 = 1.58
However the more complicated problem has f'(x) -...
Hi,
In $\mathbb{R^3} || v-w ||^2=||v||^2 + ||w||^2 - 2||v||\cdot ||w||\cos{\theta}$ But can we say $||v+w||^2=||v||^2 +||w||^2 + 2||v|| \cdot||w|| \cos{\theta}$ where v and w are any two vectors in $\mathbb{R}^3$
Hi PF, Can you tell me about an alternative, substitute for "Calculus", written by Robert A. Adams, from University of British Columbia?. It's good, but I need more bibliography; I find this one too implicit: suggested but not communicated directly. I am now asking doubts to a lot of forums each...
Details of Question:
ds/dt= v which becomes ds=v dt, where s=displacement, t =time, and v=velocity
Then we can integrate both sides of this equation, and do a little algebra, and turn the above equation into:
s − s0 = v0t + ½at2
My main question is about the integration of...
Doing R=|r-r'|, i get the expected result: \nabla \frac{1}{|r-r'|} = -\frac{1}{R^2}\hat r=-\frac{(r-r')}{|r-r'|^3}
But doing it this way seems extremely wrong, as I seem to be disregarding the module. So I tried to do it by the chain rule, and I got:
\nabla...
Hello, I am a very experienced Mathematician with a BSc Honours degree in Mathematics and one year MSc studies in Operational Research in Sussex and London Universities respectively.
I am interested in Advanced Calculus, Algebras, Positivity in Algebraic Geometry, The standard Model, and many...
If say we have a scalar function ##T(x,y,z)## (say the temperature in a room). then the rate at which T changes in a particular direction is given by the above equation)
say You move in the ##Y##direction then ##T## does not change in the ##x## and ##z## directions hence ##dT = \frac{\partial...
The Attempt at a Solution
I know the answer is supposed to be ##(-1,0)##.
However when I differentiate the above expression I get.
$$
2x+{\frac 5 2}
$$
Then the shortest distance would be when the expression equates to 0.
$$
2x+{\frac 5 2}=0
$$
I should be getting ##x=-1## but solving for ##x##...
screen shot to avoid typos
OK the key said it was D
I surfed for about half hour trying to find a solution to this but $f'(0)$ doesn't equal any of these numbers
$e^0=\pm 1$ from the $e^{(x^2-1)^2}$
kinda ?
$\tiny{4.2.5}$
$\displaystyle\int^1_0{xe^x\ dx}$
is equal to
$A.\ \ {1}\quad B. \ \ {-1}\quad C. \ \ {2-e}\quad D.\ \ {\dfrac{e^2}{2}}\quad E.\ \ {e-1}$
ok I think this is ok possible typos
but curious if this could be solve not using IBP since the only variable is x
Hello!
I am a 'mature' learner and am fascinated by all kinds of physics and math ideas. Learning is the key to enjoying science and keeping an open mind. I must admit, I am not very sharp on my physics skills and my calculus is pretty rusty now (I don't work in the science field, per se) so I...
I have the following function
$$f^{(0)}\left(x\right)=f\left(x\right)=e^{x}$$
And want to approximate it using Taylor at the point ##\frac{1}{\sqrt e} ##
I also want to decide (without calculator)whether the error in the approximation is smaller than ##\frac{1}{25} ##
The Taylor polynomial is...
Hi!
Some time ago I came across a series and never solved it, I tried to give a new go because I was genuinely curious how to tackle it, which I thought would work, because it looks innocent, but there is something about the beast making it hard to approach for me. So need some help! Maybe this...
I got a polar function.
$$ \psi = P(\theta )R(r) $$
When I calculate the Laplacian:
$$ \ \vec \nabla^2 \psi = P(\theta)R^{\prime\prime}(r) + \frac{P(\theta)R^{\prime}(r)}{r} + \frac{R(r)P^{\prime\prime}(\theta)}{r^{2}}
$$
Now I need to convert this one into cartesian coordinates and then...
Hello, I am learning how to use calculus to derive the formula for kinetic energy
now, I understandthe majority of the steps in how to do this, however, there is one step where I get totally lost, I will post a picture of the steps and I will circle the part where I get lost. If you see the...
A student has test his airplane and he is far from the airplane for 5 meter.He start to test his airplane by letting his airplane to move 60 degree from the horizontal plane with constant velocity for 120 meter per minute.Find the rate of distance between the student and the plane when the plane...
Summary:: Consider the rectangular water tank, at the base the length is the same for 200 cm. There are 100 holes for water to come out which each hole have the same flow rate. Find the amount of water that come out in each hole by using differential when we know that there is an error in the...
Consider the rectangular water tank, at the base the length is the same for 200 cm. There are 100 holes for water to come out which each hole have the same flow rate. Find the amount of water that come out in each hole by using differential when we know that there is an error in the measurement...
Here is how my teacher solved this:
I understand what the nabla operator does, ##∇\cdot\vec v## means that I am supposed to calculate ##\sum_{n=1}^3\frac {d\vec v} {dx_n}## where ##x_n## are cylindrical coordinates and ##\vec e_3 = \vec e_z##. I understand why ##∇\cdot\vec v = 0##, I would get...
##(\nabla\times\vec B) \times \vec B=\nabla \cdot (\vec B\vec B -\frac 1 2B^2\mathcal I)-(\nabla \cdot \vec B)\vec B##
##\mathcal I## is the unit tensor
We take an arbitrary spacetime point ##(x,t)## in any observer's reference frame ##A##.
Let ##(x(v),t(v))## be the co-ordinates of this same event as seen from a frame ##B## moving at a velocity ##v## wrt ##A##. As ##v## varies, the set of points ##(x(v),t(v))## constitute some curve ##C##.
So...
Hello, all around the web and even on this website, I've been told countless times that Apostol/Spivak's calculus books are superior to Stewarts. Having personally read about a forth of Apostol's book, and having read half or more of Stewarts, I notice Stewart has better explanations, and better...
$\displaystyle\lim_{x \to 0}\dfrac{1-\cos^2(2x)}{(2x)^2}=$
by quick observation it is seen that this will go to $\dfrac{0}{0)}$
so L'H rule becomes the tool to use
but first steps were illusive
the calculator returned 1 for the Limit
question:
My first attempt:
my second attempt:
So I am getting 0 (the right answer) for the first method and 40 for the second method. According to the theorem, shouldn't the determinant of the matrix remain the same when the multiple of one row is added to another row? Can anyone explain...
Students see my 20+ page calculus bundle on limits, derivatives and integrals and their applications. The summary notes are cleanly written, have background math grid paper, and summarize all major concepts, formulas, and procedures from calculus books.
Please tell me what you think and if this...
1. $f(x)=(2x+1)^3$ and let g be the inverse function of f. Given that$f(0)=1$ what is the value of $g'(1)$?
A $-\dfrac{2}{27}$ B $\dfrac{1}{54}$ C $\dfrac{1}{27}$ D $\dfrac{1}{6}$ E 6
2. given that $\left[f(x)=x-2,\quad g(x)=\dfrac{x}{x^2+1}\right]$
find $f(g(-2))$...
Does anyone know any good research on this topic? I'm basically looking for information on what would be solving integral and differential equations in which the unknown you need to solve for is the level of a integral or derivative in the equation. For example F'1/2(u)+F'x(u)=F'1/3(u) where the...
Hi everyone. I have provided myself a problem that I insist on solving, however, I want to do it "the right way" where I can put every parameter into a calculator and get an answer quickly. I pondered doing it manually and figured that it could be done to a reasonable precision in an hour or...