Given that the Hamiltonian is H = P^2/(2m) + aδ(X − x(naught)) + bδ(X + x(naught), where x(naught) is a positive number. Find the conditions for bound states to exist and calculate their energies. Find the scattering matrix for arbitrary values of a and b.
Can someone help me solve this please.
Homework Statement
Part e)
Homework Equations
I know that the time evolution of a system is governed by a complex exponential of the hamiltonian:
|psi(t)> = Exp(-iHt) |psi(0)>
I know that |psi(0)> = (0, -2/Δ)
The Attempt at a Solution
I'm stuck on part e.
I was told by my professor...
What is a symplectic manifold or symplectic geometry? (In intuitive terms please)
I have a vague understanding that it involves some metric that assigns an area to a position and conjugate momentum that happens to be preserved. What is 'special' about Hamilton's formulation that makes it more...
Could someone please prove that the H=T+V for systems where the transformation from Cartesian to Generalized coordinates is time independent. I have read through the proofs in Taylor's classical mechanics and Goldstein's but do not understand them.
Dear all,
I am encoutering some difficulties while calculating the Hamiltonian after the transformation to the interaction picture. I am following the tutorial by Sasura and Buzek:
https://arxiv.org/abs/quant-ph/0112041
Previous:
I already know that the Hamiltonian for the j-th ion is given...
Is it possible to create a ‘Transverse Field Ising Spin’-compatible Super Hamiltonian?
I want to apply the Super Hamiltonian to this paper: https://arxiv.org/abs/1612.05695
I'm trying to recreate some results from a paper:
https://arxiv.org/pdf/1406.1711.pdf
Basically they take the Hamiltonian of graphene near the Dirac point (upon irradiation by a time periodic external field) and use Floquet formalism to rewrite it in an extended Hilbert space incorporating...
Hi Everyone!
I have done three years in my undergrad in physics/math and this summer I'm doing a research project in general relativity. I generally use a computer to do my GR computations, but there is a proof that I want to do by hand and I've been having some trouble.
I want to show that...
Homework Statement
I'm reading the book about Statistical Physics from W. Nolting, specifically the chapter about quantum gas.
In the case of a classical ideal gas, we can get the state functions with the partition functions of the three ensembles (microcanonical, canonical and grand...
Homework Statement
Hi, I'm trying to familiarize with the bra-ket notation and quantum mechanics. I have to find the hamiltonian's eigenvalues and eigenstates.
##H=(S_{1z}+S_{2z})+S_{1x}S_{2x}##
Homework Equations
##S_{z} \vert+\rangle =\hbar/2\vert+\rangle##
##S_{z}\vert-\rangle...
1. In Classical Hamiltonian, it's equal to the kinetic energy plus potential energy.. but I read it that for a free particle, it doesn't even depend on position.. i thought the potential energy depends on position. If it doesn't depend on position, what does it depend on?
2. Since the...
To get the dynamics of particles in a box. You are supposed to get the Hamiltonian which is potential energy plus kinetic energy. But does the potential energy take into account the momentum of the particles in the box? What happens if you change the momentum of the particles.. do the potential...
I'm a beginner in QFT, starting out with D. J. Griffiths' book in this topic.
I have a question on the operators used in QM. What are operators? What is the physical significance of operators? I can understand that ##\frac {d}{dt}## to be an operator, but how can there be a total energy...
The Hamiltonian in classical mechanics is not always equal to the total energy of the system. I believe this is only true if there is only a potential field and no vector potential. However, in quantum mechanics for a particle in an EM field, even if a vector potential is used the energy...
Hello! I read that if we apply the exactly same procedure for Dirac theory as we did for Klein Gordon, in quantizing the field, we obtain this hamiltonian: ##H=\int{\frac{d^3p}{(2\pi)^3}\sum(E_pa_p^{s\dagger}a_p^s-E_pb_p^{s\dagger}b_p^s)}## and this is wrong as by applying the creation operator...
The hamiltonian is not in the wave function but only exist when the amplitude is squared. But in the book "Deep Down Things". Why is the Schrodinger Equation composed of kinetic plus potential terms equal total energy. Is it not all about probability amplitude? How can probability amplitude have...
Hi! it's been a day since I have started this problem. I was wondering how I could arrive to this Hamiltonian?
And I'm a bit at a lost on how exactly to derive this? I hope anyone can help me with this, even a suggestion of good starting point would be much appreciated.
Basically the problem...
Hi! I am currently trying to derive the Fourier transform of a 2D HgTe Hamiltonian, with k_x PBC and vanishing boundary conditions in the y direction at 0 and L. Here is the Hamiltonian:
H = \sum_{k}\tilde{c_k}^{\dagger}[A\sin{k_x}\sigma_x + A\sin{k_y}\sigma_y + (M-4B+2B[\cos{k_x} +...
How come a+a- ψn = nψn ? This is eq. 2.65 of Griffith, Introduction to Quantum Mechanics, 2e. I followed the previous operation from the following analysis but I cannot get anywhere with this statement. Kindly help me with it. Thank you for your time.
I am self studying the Book- Introduction to Quantum Mechanics , 2e. Griffith. Page 47.
While the book has given a proof for eq. 2.64 but its not very ellaborate
Integral(infinity,-infinity) [f*(a±g(x)).dx] = Integral(infinity,-infinity) [(a±f)* g(x).dx] . It would be great help if somebody...
Lagrangian is defined by ##L=L(q_i,\dot{q}_i,t)## and hamiltonian is defined by ##H=H(q_i,p_i,t)##. Why there is relation
H=\sum_i p_i\dot{q}_i-L
end no
H=L-\sum_i p_i\dot{q}_i
or why ##H## is Legendre transform of ##-L##?
Homework Statement
The red box only
Homework EquationsThe Attempt at a Solution
I suppose we have to show
L_3 (Π_1) | E,m> = λ (Π_1) | E,m>
and
H (Π_1) | E,m> = μ (Π_1) | E,m>
And I guess there is something to do with the formula given? But they are in x_1 direction so what did they have...
Hi!
I'm having some trouble on understanding how the Hamiltonian of the e-m field in the single mode field quantization is obtained in the formalism proposed by Gerry-Knight in the book "Introductory Quantum Optics".
(see...
Homework Statement
Finding eigenvalues of an hamiltonian
Homework EquationsH = a S²z + b Sz
(hbar = 1)
what are the eigenvalues of H in |S,M> = |1,1>,|1,0>,|1,-1>
The Attempt at a SolutionH|1,1> = (a + b) |1,1>
H|1,0> = 0
H |1,-1> = (a-b) |1,-1>
which gives directly the energy :
a+b , 0 ...
Take a spin-1/2 particle of mass ##m## and charge ##e## and place it in a magnetic field in the ##z## direction so that ##\mathbf B=B\mathbf e_z##. The corresponding Hamiltonian is
$$\hat H=\frac{eB}{mc}\hat S_z.$$
This must have units of joules overall, and since the eigenvalues of ##\hat S_z##...
Homework Statement
Consider the free real scalar field \phi(x) satisfying the Klein-Gordon equation, write the Hamiltonian in terms of the creation/annihilation operators.
Homework Equations
Possibly the definition of the free real scalar field in terms of creation/annihilation operators...
I have this Hamiltonian --> (http://imgur.com/a/lpxCz)
Where each G is a matrix.
I want to find the eigenvalues but I'm getting hung up on the fact that there are 6 indices. Each G matrix lives in a different space so I can't just multiply the G matrices together. If I built this Hamiltonain...
In 3rd edition of Goldstein's "Classical Mechanics" book, page 335, section 8.1, it is mentioned that :
In Hamiltonian formulation, there can be no constraint equations among the co-ordinates.
Why is this necessary ? Any simple example which will elaborate this fact ?
But in Lagrangian...
Homework Statement
Consider an experiment on a system that can be described using two basis functions. We begin in the ground state of a Hamiltonian H0 at a time t1, then rapidly change the hamiltonian to H1 at the time t1. At a later time tD>t1 you preform a measurement of an observable D...
I'm working on this problem "Consider an experiment on a system that can be described using two basis functions. In this experiment, you begin in the ground state of Hamiltonian H0 at time t1. You have an apparatus that can change the Hamiltonian suddenly from H0 to H1. You turn this apparatus...
I am familiar with the usual solution of the hydrogen atom using the associated legendre functions and spherical harmonics, but my question is: is it possible to extend the hamiltonian of the hydrogen atom to naturally encompass half integer spin?
My guess is that spin only pops in naturally in...
The system in which I tried to calculate the Hamiltonian matrix was a particle in a stadium (Billiard stadium). And I used the principle where we take a rectangle around the stadium in which the parts outside the stadium have a very high potential V0.
We know the wave function of a rectangular...
Hi!
I'm trying to understand how to diagonalize a Hamiltonian numerically. Basically I have a problem with a Hamiltonian such as
H = \frac{1}{2}c^{\dagger}\textbf{H}c
where c = (c_1,c_2,...c_N)^T
The dimensions of the total Hamiltonian are 2N, because each c_i is a 2 spinor. I need to...
Hey, I just had a quick question about using hamiltonians to determine energy levels.
I know that the eigenvalue of the hamiltonian applied to an eigenket is an energy level.
H |a> = E |a>
But my question is if I am given an equation for a specific Hamiltonian:
H = (something arbitrary)
And...
In classical mechanics, the Hamiltonian and the Lagrangian are Legendre transforms of each other. By analogy, in quantum mechanics and quantum field theory, the relationship between the Hamiltonian and the Lagrangian seems to be preserved. Where can I find a derivation of the Lagrangian...
Graphene's Hamiltonian contains first order derivatives (from the momentum operators) which aren't invariant under simple spatial rotations. So it initially appears to me that it isn't invariant under rotation. From reading around I see that we also have to perform a rotation on the Pauli...
Homework Statement
A particle with mass, m, is subject to an attractive force.
\begin{equation}
\vec{F}(r,t) = \hat{e}_r \frac{k}{r^2}e^{-\beta t}
\end{equation}
Find the Hamitonian of the particle
Homework Equations
H = T + U
Where T is the kinetic energy and U is the potential...
If I have a Hamiltonian diagonal by blocks (H1 0; 0 H2), where H1 and H2 are square matrices, is the density matrix also diagonal by blocks in the same way?
Homework Statement
Given \hat{P}_r\psi=-i\hbar\frac{1}{r}\frac{\partial}{\partial{r}}(r\psi), show \hat{H}=\frac{1}{2m}(\hat{P}^2_r+\frac{\hat{L}^2}{r^2})
Homework EquationsThe Attempt at a Solution
The solution starts out with...
I am reading Cohen-Tannoudji's Atom photon interactions (2004 version), in the Appendix he explains that for atom-light interaction, the electric dipole Hamiltonian (d.E form) is got from the original, "physical" (in line with his language) p.A form Hamiltonian by a time-independent unitary...
Homework Statement
Consider a charge ##q##, with mass ##m##, moving in the ##x-y## plane under the influence of a uniform magnetic field ##\vec{B}=B\hat{z}##. Show that the Hamiltonian $$ H = \frac{(\vec{p}-q\vec{A})^2}{2m}$$ with $$\vec{A} = \frac{1}{2}(\vec{B}\times\vec{r})$$ reduces to $$...
Imagine I have a complicated second-order differential equation that I strongly suspect can be derived from a Hamiltonian (with additional momentum dependence beyond p2/2m, so the momentum is not simply mv, but I don't know what it is).
Are there any ways to test whether or not the given...
I am given a hamiltonian for a two electron system $$\hat H_2 = \hat H_1 \otimes \mathbb {I} + \mathbb {I} \otimes \hat H_1$$
and I already know ##\hat H_1## which is my single electron Hamiltonian. Now I am applying this to my two electron system. I know very little about the tensor product...
Yesterday I was asking questions from someone and in between his explanations, he said that the Euclidean action in a QFT is actually equal to its Hamiltonian. He had to go so there was no time for me to ask more questions. So I ask here, is it true? I couldn't find anything on google. If its...
Hello, I have been assigned to write a report on a topic of my choice for my Computational Physics class, and I chose to focus on the symplectic integration of Hamiltonian systems, in particular the Lotka-Volterra model.
A 3-species model(\gamma eats \beta, \beta eats \alpha) is not, unlike the...
Hello, I am stuck at the beginning of an exercise because I have some trouble to understand how are the energy level in this problem :
In a crystal we have Ni2+ ions that we consider independent and they are submitted to an axial symmetry potential. Each ion acts as a free spin S=1. We have the...
Hello everybody,
The general expression of molecular Hamiltonian operator for any molecule is:
$$\hat{H} = \hat{T}_n+\hat{T}_e+\hat{V}_{ee}+\hat{V}_{nn}+\hat{V}_{en}+\hat{f}_{spin-orbit} $$
where:
##\hat{T}## correspond to kinetic energy operator
##\hat{V}## correspond to potential energy...
Homework Statement
I'm currently working on a homework set for my intermediate QM class and for some reason I keep drawing a blank as to what to do on the first problem. I'm given three potentials, V(x), the first is of the form {A+Bexp(-Cx^2)}, the others I'll leave out. I'm asked to draw the...