In the mathematical field of graph theory, a Hamiltonian path (or traceable path) is a path in an undirected or directed graph that visits each vertex exactly once. A Hamiltonian cycle (or Hamiltonian circuit) is a Hamiltonian path that is a cycle. Determining whether such paths and cycles exist in graphs is the Hamiltonian path problem, which is NP-complete.
Hamiltonian paths and cycles are named after William Rowan Hamilton who invented the icosian game, now also known as Hamilton's puzzle, which involves finding a Hamiltonian cycle in the edge graph of the dodecahedron. Hamilton solved this problem using the icosian calculus, an algebraic structure based on roots of unity with many similarities to the quaternions (also invented by Hamilton). This solution does not generalize to arbitrary graphs.
Despite being named after Hamilton, Hamiltonian cycles in polyhedra had also been studied a year earlier by Thomas Kirkman, who, in particular, gave an example of a polyhedron without Hamiltonian cycles. Even earlier, Hamiltonian cycles and paths in the knight's graph of the chessboard, the knight's tour, had been studied in the 9th century in Indian mathematics by Rudrata, and around the same time in Islamic mathematics by al-Adli ar-Rumi. In 18th century Europe, knight's tours were published by Abraham de Moivre and Leonhard Euler.
I am trying to figure out how to get the Hamiltonian for a mass on a fixed smooth hemisphere.
Using Thorton from example 7.10 page 252
My main question is about the Potential energy= mgrcosineθ is the generalized momenta Pdotθ supposed to be equal to zero because θ is cyclic? Or is Pdotθ=...
Hello everybody,
From a complete set of orthogonal basis vector ##|i\rangle## ##\in## Hilbert space (##i## = ##1## to ##n##), I construct and obtain a nondiagonal Hamiltonian matrix
$$
\left( \begin{array}{cccccc}
\langle1|H|1\rangle & \langle1|H|2\rangle & . &. &.& \langle1|H|n\rangle \\...
In quantum mechanics, position ##\textbf{r}## and momentum ##\textbf{p}## are conjugate variables given their relationship via the Fourier transform. In transforming via the Legendre transform between Lagrangian and Hamiltonian mechanics, where ##f^*(\textbf{x}^*)=\sup[\langle \textbf{x}...
Hi, I am a physics student and i was asked to answer some questions about Hydrogen atom wavefunctions. I hope you can help me (sorry for my english, is not my motherlanguage, i will try to explain myself properly)
1. In order to find hamiltonian eigenfunctions of Hydrogen atom, we make then be...
The permutation operator commutes with the Hamiltonian when considering identical particles, which implies:
$$ [\hat{P}_{21}, \hat{H}] = 0 \tag{1}$$
Now given a general eigenvector ##{\lvert} {\psi} {\rangle}##, where
$$ \hat{P}_{21} (\hat{H}{\lvert}{\psi}){\rangle} = (\hat{P}_{21} \hat{H})...
Homework Statement
How to calculate the matrix elements of the quantum harmonic oscillator Hamiltonian with perturbation to potential of -2cos(\pi x)
The attempt at a solution
H=H_o +H' so H=\frac{p^2}{2m}+\frac{1}{2} m \omega x^2-2cos(\pi x)
I know how to find the matrix of the normal...
## L(x) = L(\phi(x), \partial_{u} \phi (x) ) = -1/2 (m^{2} \phi ^{2}(x) + \partial_{u} \phi(x) \partial^{u} \phi (x))## , the Lagrange density for a real scalar field in 4-d, ##u=0,1,2,3 = t,x,y,z##, below ##i = 1,2,3 =x,y,z##
In order to compute the Hamiltonian I first of all need to compute...
This isn't exactly homework, but something which you'd get as an assignment, so I'll still post it here in order to reach the right people..
I'm attempting to freshen up my knowledge on Hamiltonian systems, so I've tried to formulate the Kepler problem in Hamiltonian dynamics...
Homework Statement
Working through problems in Mahan's 'Many Particle Physics' book, and at the end of the 1st chapter there's a question where we're asked to consider a fermion system with three energy states with eigenvalues E1, E2, E3, and matrix elements M12, M23, M13 which connect them and...
Hi folks,
I am looking to learn the Lagrangian and Hamiltonian approach to celestial mechanics - I have previous experience in Newtonian numerical solutions for orbital motion but am looking to achieve similar things but through the use of Hamiltonian formulations.
After having a poke around...
The path integral in quantum mechanics involves a factor ##e^{iS_{N}/\hbar}##, where
##S_{N}\equiv \sum\limits_{n=1}^{N+1}[p_{n}(x_{n}-x_{n-1})-\epsilon H(p_{n},x_{n},t_{n})].##
In the limit ##N \rightarrow \infty##, ##S_{N}## becomes the usual action ##S## for a given path.When the...
Homework Statement
Starting from the proca lagrangian $$L=-\frac14 F_{uv}F^{uv}+\frac12 m^2 A_uA^u$$
Homework Equations
$$H=\sum p_i\dot{q_i}-L$$
The Attempt at a Solution
$$L=-\frac14F_{uv}F^{uv}+\frac12m^2A_uA^u\rightarrow\partial_uF^{uv}+m^2A^v=0$$
$$p^i=\frac{\partial L}{\partial...
In chapter 11, Lancaster takes us through the 5 steps for canonical quantization of fields, and in example 11.3 he derives a mode expansion of the Hamiltonian which ends in this:
$$E=\int d^3 p E_p (a _p^{\dagger} a_p + \frac{1}{2} \delta^{(3)}(0)) $$
Which I have no problem with, but then...
Homework Statement
Assuming psi is an eigenstate of the Hamiltonian (TISE) and that E=0, determine the potential V(x) appearing in the Hamiltonian.
Homework Equations
Time Independant Schrodinger Equation - 1 Dimensional (x)
I am given the wavefunction psi = N/(1+x^2)
I have found the...
Hello,
I'm a second year physics student. We are going to use "hand and finch analytical mechanics", however the reviews I saw about this book are bad.
I've already taken calculus for mathematicians, linear algebra, classical mechanics, special relativity, and electromagnetism.
The topics it...
Suppose I am given some 1D Hamiltonian:
H = ħ2/2m d2/dx2 + V(x) (1)
Which I want to solve on the interval [0,L]. I think most of you are familiar with the standard approach of discretizing the interval [0,L] in N pieces and using the finite difference formulas for V and the...
This book should introduce me to Lagrangian and Hamiltonian Mechanics and slowly teach me how to do problems. I know about Goldstein's Classical Mechanics, but don't know how do I approach the book.
In literature I have read it is said that the Hamiltonian ##H## is the generator of time translations. Why is this the case? Where does this statement derive from?
Does it follow from the observation that, for a given function ##F(q,p)##, $$\frac{dF}{dt}=\lbrace F,H\rbrace +\frac{\partial...
Homework Statement
I have the matrix form of the Hamiltonian:
H = ( 1 2-i
2+i 3)
If in the t=0, system is in the state a = (1 0)T, what is Ψ(x,t)?
Homework Equations
Eigenvalue equation
The Attempt at a Solution
So, I have diagonalized given matrix and got...
Recently I have been asked to solve the problem of an electron in a Zeeman-field that couples the spin of the electron to the magnetic field.
I am not sure how to correctly set up the problem. I think, however, that what I have done on the picture is correct. The usual p^2/2m + V term in the...
Suppose the initial radial position and radial velocity of the bead are ##r_0>0## and ##0## respectively. Then ##E## is negative. Is there any significance to the negative value of ##E##? Note that ##E## is defined by (5.52) and given by (5.144) below.
Dear all,
The Hamiltonian for a particle in a magnetic field can be written as
$$\hat{H} = \frac{1}{2}g\mu_B\textbf{B}\cdot\boldsymbol\sigma$$
where ##\boldsymbol\sigma## are the Pauli matrices.
This Hamiltonian is written in the basis of the eigenstates of ##\sigma_z##, but how is it...
Homework Statement
A spin-1/2 electron in a magnetic field can be regarded as a qubit with Hamiltonian
$$\hat{H} = \frac{1}{2}g\mu_B\textbf{B}\cdot\boldsymbol\sigma$$. This matrix can be written in the form of a qubit matrix
$$
\begin{pmatrix}
\frac{1}{2}\epsilon & t\\
t^* &...
Dear all,
The Hamiltonian for a spin-orbit coupling is given by:
\mathcal{H}_1 = -\frac{\hbar^2\nabla^2}{2m}+\frac{\alpha}{2i}(\boldsymbol \sigma \cdot \nabla + \nabla \cdot \boldsymbol \sigma)
Where
\boldsymbol \sigma = (\sigma_x, \sigma_y, \sigma_z)
are the Pauli-matrices.
I have to...
Only thing I know about them is that they are alternate mechanical systems to bypass the Newtonian concept of a "force". How do they achieve this? Why haven't they replaced Newtonian mechanics, if they somehow "invalidate" it or make it less accurate, by the Occam's razor principle?
Thanks in...
Homework Statement
Consider a two-state system with a Hamiltonian defined as
\begin{bmatrix}
E_1 &0 \\
0 & E_2
\end{bmatrix}
Another observable, ##A##, is given (in the same basis) by
\begin{bmatrix}
0 &a \\
a & 0
\end{bmatrix}
where ##a\in\mathbb{R}^+##.
The initial state of the system...
Hello,
I'm stuck with this exercise, so I hope anyone can help me.
It is to prove, that the density of states of an unknown, quantum mechanical Hamiltonian ##\mathcal{H}##, which is defined by
$$\Omega(E)=\mathrm{Tr}\left[\delta(E1\!\!1-\boldsymbol{H})\right]$$
is also representable as...
I have a basic understanding of the reason why we look for derivative or integration in Physics, based on the water flow example, where integration is the process of accumulating the varying water flow rate "2x" , while we reverse to the water flow rate by differentiating " x squared " the...
Hello everyone
Homework Statement
I have been given the testfunction \phi(\alpha, r)=\sqrt{(\frac{\alpha^3}{\pi})}exp(-\alpha r) , and the potential V(r,\theta, \phi)=V(r)=-\frac{e^2}{r}exp(\frac{-r}{a})
Given that I have to write down the hamiltonian (in spherical coordinates I assume), and...
Hi, I have been trying to get my head around the effect of a time reversed hamiltonian ##H^B(t)=H(-t)=T^{-1}H^F T ## on a state ket ##|\psi>##, where ##H^F=H## is the regular hamiltonian for the system (energy associated with forward time translation) and ##H^B=H(-t)## is the time reversed...
I am using Jose & Saletan's "Classical Dynamics", where they introduce a rather contrived Hamiltonian in the problem set: H(q_1,p_1,q_2,p_2) = q_1p_1-q_2p_2 - aq_1^2 + bq_2^2 where a and b are constants. This Hamiltonian has several constants-of-motion, including f = q1q2, as can be easily...
Homework Statement
The Hamiltonian H for a certain physical quantum mechanical system has three eigenvectors {|v1>, |v2>, |v3>} satisfying:
H|vj> = (2-j)a|vj>
Write down the matrix representing H in the representation {|v1>, |v2>, |v3>} .
Homework EquationsThe Attempt at a Solution
I though...
Homework Statement
We have a mas m attached to a vertical spring of length (l+x) where l is the natural length.
Homework Equations
Find the Lagrangian and the hamiltonian of the system if it moves like a pendulum
The Attempt at a Solution
we know that the lagrangian of a system is defined as...
Homework Statement
For the system:
\frac{dx}{dt}=x\cos{xy}
\: \:
\frac{dy}{dt}=-y\cos{xy}
(a) is Hamiltonian with the function:
H(x,y)=\sin{xy}
(b) Sketch the level sets of H, and
(c) sketch the phase portrait of the system. Include a description of all equilibrium points and any saddle...
Good day everyone,
The question is as following:
Consider an electron gas with Hamiltonian:
\mathcal{H} = -\frac{\hbar^2 \nabla^2}{2m} + \alpha (\boldsymbol{\sigma} \cdot \nabla)
where α parameterizes a model spin-orbit interaction. Compute the eigenvalues and eigenvectors of wave vector k...
Given 1A.1 and 1A.2, I have been trying to apply the Schrödinger equation to reproduce 1A.3 and 1A.4 but have been struggling a bit. I was under the assumption that by applying ##\hat{W} \rvert {\psi} \rangle= i\hbar \frac {d}{dt} \rvert{\psi} \rangle## and then taking ##\langle{k'} \lvert...
System is composed of two qubits and the bath is one bath qubit.
The interaction Hamiltonian is:
$$\sigma_1^x\otimes B_1 + \sigma_2^x\otimes B_2$$ where $$B_i$$ is a 2 by 2 matrix.
I try to interpret and understand this, is it the same as:
$$(\sigma_1^x\otimes B_1)\otimes I_2 +...
A system consisting of two spins is described by the Hamiltonian (b>0)
H = aσ1 ⋅ σ2 + b(σ1z - σ2z)
where a and b are constants.
(a) Is the total spin S = ½ (σ1 + σ2) conserved? Which components of S, if any, are conserved?
(b) Find the eigenvalues of H and the corresponding...
Homework Statement
Im trying to understand the Legendre transform from Lagrange to Hamiltonian but I don't get it. This pdf was good but when compared to wolfram alphas example they're slightly different even when accounting for variables. I think one of them is wrong. I trust wolfram over the...
I'm working on some classical mechanics and just got a question stated:
Is the Hamiltonian for this system conserved? Is it the total energy?
In my problem it was indeed the total energy and it was conserved but it got me thinking, isn't the Hamiltonian always the total energy of a system...
The Klein-Gordon field ##\phi(\vec{x})## and its conjugate momentum ##\pi(\vec{x})## is given, in the Schrodinger picture, by
##\phi(\vec{x})=\int \frac{d^{3}p}{(2\pi)^{3}}...
Homework Statement
The Lagrangian density for a massive vector field ##C_{\mu}## is given by ##\mathcal{L}=-\frac{1}{4}F_{\mu\nu}F^{\mu\nu}+\frac{1}{2}m^{2}C_{\mu}C^{\mu}## where ##F_{\mu\nu}=\partial_{\mu}C_{\nu}-\partial_{\nu}C_{\mu}##.
Derive the equations of motion and show that when ##m...
What are Hamiltonian/Lagrangian Mechanics and how are they different from Newtonian?
What are the benefits to studying them and at what year do they generally teach you this at a university?
What are the maths required for learning them?
Homework Statement
We are given a paramagnetic system of N distinguishable particles with 1/2 spin where we use N variables
s_k each binary with possible values of ±1 where the total energy of the system is known as:
\epsilon(s) = -\mu H \sum_{k=1}^{N} s_k where \mu is the magnetic moment...
H=p^2/2m+c
What's c? It's of course a shift in energy, but can be thought also as a smoother and smoother real-space local potential that becomes a constant all over the space.
On the other hand, why couldn't one think about it as a constant potential in reciprocal space? It's a shift in energy...
In the Hamilonian for an H2+, the kinetic energy of the electron (KE of nucleus ignored due to born-oppenheimer approximation) has a negative sign in front of it.
I understand the signs for the potential energy operators but not for the KE apart from the strictly mathematical point of view. Can...
Suppose we have an electron in a hydrogen atom that satisfies the time-independent Schrodinger equation:
$$-\frac{\hbar ^{2}}{2m}\nabla ^{2}\psi - \frac{e^{2}}{4\pi \epsilon_{0}r}\psi = E\psi$$
How can it be that the Hamiltonian is spherically-symmetric when the energy eigenstate isn't? I was...
Homework Statement
This problem is from Zetelli 3.21
http://imgur.com/wYTNVwz
http://imgur.com/wYTNVwz
Homework Equations
Just the standard probability via product between the eigenfunction and the wavefunction
The Attempt at a Solution
I've found the eigenvectors for the Hamiltonian...
I came across a previous exam question which stated: Do all physical states, ψ, abide to Hψ = Eψ. I thought about it for a while, but I'm not really sure.
Hello,
This was part of my midterm exam that i couldn't solve.
Any help is extremely appreciated.
Problem: The K.E. of a rotating top is given as L^2/2I where L is its angular momentum and I is its moment of inertia. Consider a charged top placed at a constant magnetic field. Assume that the...