If you want to find out the kinetic energy (the unit is GJ as in other cannons) of the gunpowder cannon that appears in Monster Hunter, what do you need and how can you calculate it?
I am wondering if it is possible to calculate either the Kinetic Energy or Rotational Kinetic Energy of an object if we have the Power (kW), Torque (Nm), and Speed (RPM) of the object.
So, I use Ansys (well known FEM software) and get the next output for a modal analysis toy problem (If you happen to know Ansys that's a pre, but I promise it shouldn't matter). The problem is a simple beam, clamped at one end. I used 160 20-node brick elements to solve it (so no Timoshenko...
This is my answer:
$$KE_{total}=KE_{centermass}+KE_{uppermass}+KE_{bottommass}$$
$$KE_{total} = \frac 1 2 (mv^2 + 2m(\vec {v} + \vec {wL})^2) $$
But, the solution manual says that the answer is this:
$$KE_{total} = \frac 1 2 (mv^2 + 2m(v^2+w^2L^2)) $$
I think he regard this composite body as...
It is usual, in plasma physics, to combine the kinetic description for electron fluid and the hydrodynamic description for ion fluid, when studying the plasma properties or the dynamics of the electrostatic waves.
I am wondering what are the physical meaning and limits of such an approach.
Thanks.
A point charge of value q=8uC is released from rest at a point 1.5m away from the center of the axis of a ring with uniform charge density 3uC/m. The ring has a radius of 10 cm. What is the kinetic energy of this charge when it is 4.5 cm from the center of the charge ring, considering that it is...
I am planning to teach a school astronomy group about energy. Most people seem to accept that there are two types:
kinetic energy, resulting from movement;
potential energy, resulting from position in a force field with a potential gradient (convertible to KE if the object is allowed to move...
I'm not interested in the mathematical derivation, the mathematical derivation already is based on the assumption that momentum is a vector and kinetic energy is a scalar, thus it proves nothing.
Specifically, what happens if we discuss scalarized momentum? What happens if we discuss vectorized...
This is from Taylor's classical mechanichs, 11.4, example of finding the Lagrangian of the double pendulum
Relevant figure attached below
Angle between the two velocities of second mass is
$$\phi_2-\phi_1$$
Potential energy
$$U_1=m_1gL_1$$
$$U_2=m_2g[L_1\cos(1-\phi_1)+L_2(1-\phi_2)]$$...
Time indepedendent Schrödinger equation for a system (atom or molecule) consisting of N electrons can be written as (with applying Born - Oppenheimer approximation): $$ [(\sum_{i=1}^N - \frac {h^2} {2m} \nabla _i ^2) + \sum_{i=1}^N V(r_i) + \sum_{i < j}^N U(r_i,r_j)] \Psi = E \Psi $$
Terms in...
Here's my list of variables and things to account for:
m=100kg
Wnc=5000J
Wfriction=-500J
-Kinetic energy will be doubled (though I don't know how that plays into it exactly)
-I don't think there's any PE because it's on level ground
My idea of what the equation might be:
Wnc +1/2mv^2initial =...
1. From resnik, Halliday “Kinetic energy K is energy associated with the state of motion of an object. The faster the object moves , the greater is the kinetic energy”
If I am right this means that greater the kinetic energy, greater is its speed.
2. Force transfers energy to the body due to...
Hello,
I’ll start by saying I have the answers and the steps to the solutions, but there’s a comprehension disconnect somewhere that I’m trying to figure out. There are two parts to my question but the second one may not apply depending on the answer to the first. I wasn’t sure from the forum...
Lets consider T(\vec{p})=\frac{\vec{p}^2}{2m}=\frac{\vec{p}\cdot \vec{p}}{2m}. Then \frac{dT}{dt}=\vec{v}\cdot \vec{F}.
And if we consider
T=\frac{p^2}{2m} than \frac{dT}{dt}=\frac{1}{2m}2p\frac{dp}{dt}
Could I see from that somehow that this is \vec{v}\cdot \vec{F}?
The classical definition to the Kinetic Energy equation is KE=integral of F*dx where F=d(m*v)/dt. When mass is constant, KE=(1/2)m*v^2.
I am working on a vibration problem at work and having to review my Lagrangian Dynamics books from 30 years ago. So my question is about all of the authors...
When the pendulum is released, the Kinetic Energy should be 0. When the pendulum is at the bottom/hits the rod, it should have 0 potential energy. However, I don't quite understand what happens after it hits the rod.
I got curious about firearm ballistics and googled something similar to "bullet momentum vs kinetic energy".
IIRC, momentum P = mv (checked); and kE = (mv^2)/2 (also checked).
So I essentially wondered if it's worse to get hit by a bullet with greater kE than by one with lesser kE, presuming...
Hello again. I don't believe there are rules about posting twice in a day. I'm not a student and I answer Physics questions as a hobby, but I've only just started learning, so please help me out. I'm answering IBDP Physics questions.
Here's my thinking:
KE is not a vector quantity, so it's...
I'm having trouble putting the rest of the equations together, I believe I need the different from (0,0,0) to (1,0,0) and then (1,0,0) to (1,1,0) right? Then solve for x direction and y direction. What would I use for Wnc tho? I'm very confused.
Hi, Folks,...new around here. Please excuse my naivete, but--
I have a problem with the physics behind GHG Theory/GW. Most discussions seem to center around absorbtion/transmission spectra of gases, their correlation with temperature, ala' Black Box radiation and such, and the fact that GHG...
A free particle with coordinates as shown has kinetic energy ##T = \frac{1}{2}m\left(\dot r^2 + r^2\dot\theta^2 + r^2\sin^2\theta\dot\phi^2\right)##
So we see ##T## depends on ##\theta##.
Now suppose we rotate our coordinate system such that only one coordinate ##\theta## changes from...
I know the math behind these, and I'm happy to use more precise language if needed, I just wanted to get some input on this sweeping generalization that entropy is the conversion of potential to kinetic energy.
A brief summary of two important branches of entropy:
1) thermodynamics - the total...
Say 2 cars are traveling side by side at 10 m/s in some flat, wide open space. Relative to each other they are stationary. Relative to someone on the ground they are both moving at 10 m/s. Now say you're in 1 of the cars and you see the other car accelerate, changing his velocity by 10 m/s in...
As an object approaches a black hole’s event horizon, it experiences increasing gravitational time dilation, causing it to appear to an outside observer to slow down, until, at the event horizon, it appears to stop. An object traveling in space that increases its velocity from one...
Hello,
I have a particle at point A with charge ##q_A##, and an unmovable sphere of radius ##R_B## at point B with a volumic charge density ##\rho##. The distance from particle A to the centre of the sphere in B is ##r##. Both objects have opposed charges, so, the particle in A, initially at...
Ball A of mass 2kg, is moving in a straight line at 5 m/s. Ball B of mass 4kg is moving in the same straight line at 2 m/s. Ball B is traveling directly towards Ball A. The balls hit each other and after the impact each ball has reversed its direction of travel. The kinetic energy lost in the...
If I hold a ball above the ground, it has potential energy. Once gravity pulls on it, it becomes kinetic. What is gravity and how does it convert one kind of energy to another?
Hi guys,
a special relativity problem requested to choose the right graph representing relativistic momentum ##p## as a function of rel. kinetic energy ##K##, from these four:
At first, I tried writing ##p## as a function of ##K##, in order to then analyze the function's graph and see if it...
As we know Energy is a scalar quantity.
So when we add kinetic and potential energy to get Total energy.
So addicting these two energy (kinetic and potential) comes under Scalar addition ?
I just wanted to confirm it.
Take rightwards as positive.
There are 2 equations of motion, depending on whether ##\frac {dx} {dt} ## is positive or not.
The 2 equations are:
##m\ddot x = -kx \pm \mu mg##
My questions about this system:
Is this SHM?
Possible method to solve for equation of motion:
- Solve the 2nd ODE...
I have no idea how to do this. I've tried conservation of mechanical energy and it didn't work.
Ek = Kinetic Energy
R = horizontal range of the ball
h = height from which the ball is released
It is a long problem, but it is simple to understand.
I am having trouble with part A. My attempt:
Pressure outside > pressure inside container. pV = constant (isothermal). At equilibrium, all gases are at atmospheric pressure. Because it is quasi-static, the pressures of both compartments are...
D is correct, the reasoning is as follows:
1/2*(M1V1)^2 + 1/2*(M2V2)^2 = 1/2 * (M1 + M2) (Vcm)^2, since V1 =V2 =Vcm
KE retained = KE final = 1/2 *M(Vcm)^2
Let me know if reasoning is okay?
However, why A isn't correct?
So always in my problems i had mass (M) but now i don't and it seems impossible to solve this problem if I don't have mass I think i am missing something. I was looking for similar problems in my book and internet and didn't find any.
A very basic and simple query, but I can't see my way through it.
A mass m moves at speed v1 relative to a truck traveling at speed v2 , fig.a. All components except this mass are massless.
In a truck-stationary frame, the mass collides with a barrier on the truck liberating kinetic...
I have some doubts with respect on how the functional derivative for the kinetic energy in density functional theory is obtained.
I have been looking at this article in wikipedia: https://en.wikipedia.org/wiki/Functional_derivative
In particular, I'm interested in how to get the...
Yes, heat can flow into a body without increasing the mean kinetic energy of its molecules. Transferring heat energy to an object will raise its internal energy, this will not necessarily cause an increase in temperture. Specific latent heat is the energy required to change the state of one...
Hi,
Could anyone please give me a little advice.
If we look at a disc brake on a vehicle, the disc brake pads apply a friction force on the disk rotor which causes the kinetic energy of the moving vehicle to be turned into heat.
Does this heat reduce the reactive force experienced on the disks...
In this part of the lab we pushed a block on a flat table and let it slide until it stopped. So it is decelerating with no force being applied to it while moving. In this case acceleration is negative. The only force acting on it is kinetic friction. Therefore I have come up with the following...
In this problem i don't find any way to obtain de kinetic energy in KJ/Kg because when i resolve the kinetic energy formula the result its:
1/2 (1300 kg/s) (9 m/s)^2 = 5850 kg * m/s (i don't obtain m^2/s^2, so KJ/Kg its not possible)
In the potential energy (w) part i obtain this:
m*g ( i don't...
Is there any way that I can find concentrations and then find the rate constant, k? And, using them, make an Arrhenius graph to find activation energy (including the catalyst)? Any help would be much appreciated.
Change in pressure was found using a Vernier Gas Pressure Sensor. The starting...
The expectation value of the kinetic energy operator in the ground state ##\psi_0## is given by
$$<\psi_0|\frac{\hat{p^2}}{2m}|\psi_0>$$
$$=<\psi_0|\frac{1}{2m}\Big(-i\sqrt{\frac{\hbar mw}{2}}(\hat{a}-\hat{a^{\dagger}})\Big)^2|\psi_0>$$
$$=\frac{-\hbar...