In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices which are Hermitian and unitary. Usually indicated by the Greek letter sigma (σ), they are occasionally denoted by tau (τ) when used in connection with isospin symmetries.
These matrices are named after the physicist Wolfgang Pauli. In quantum mechanics, they occur in the Pauli equation which takes into account the interaction of the spin of a particle with an external electromagnetic field.
Each Pauli matrix is Hermitian, and together with the identity matrix I (sometimes considered as the zeroth Pauli matrix σ0), the Pauli matrices form a basis for the real vector space of 2 × 2 Hermitian matrices.
This means that any 2 × 2 Hermitian matrix can be written in a unique way as a linear combination of Pauli matrices, with all coefficients being real numbers.
Hermitian operators represent observables in quantum mechanics, so the Pauli matrices span the space of observables of the 2-dimensional complex Hilbert space. In the context of Pauli's work, σk represents the observable corresponding to spin along the kth coordinate axis in three-dimensional Euclidean space R3.
The Pauli matrices (after multiplication by i to make them anti-Hermitian) also generate transformations in the sense of Lie algebras: the matrices iσ1, iσ2, iσ3 form a basis for the real Lie algebra
s
u
(
2
)
{\displaystyle {\mathfrak {su}}(2)}
, which exponentiates to the special unitary group SU(2). The algebra generated by the three matrices σ1, σ2, σ3 is isomorphic to the Clifford algebra of R3, and the (unital associative) algebra generated by iσ1, iσ2, iσ3 is isomorphic to that of quaternions.
Hi,
I just have a question relative to matrices, mostly. Is the reason there are 4 values in a matrix because there are (at least in basic terms) 3 dimensions of space and one of time?
Like it seems kind of obvious, but for some weird reason in school they never state it explicitly in those...
Homework Statement
Given the six vectors below:
1. Find the largest number of linearly independent vectors among these. Be sure to carefully describe how you would go about doing so before you start the computation.
2 .Let the 6 vectors form the columns of a matrix A. Find the dimension of...
Hi, the three main types of complex matrices are:
1. Hermitian, with only real eigenvalues
2. Skew-Hermitian , with only imaginary eigenvalues
3. Unitary, with only complex conjugates.
Shouldn't there be a fourth type:
4. Non-unitary-non-hermitian, with one imaginary value (i.e. 3i) and a...
Homework Statement
Construct a 3 × 3 example of a linear system that has 9 different coefficients on the left hand side but rows 2 and 3 become zero in elimination. If the right hand sude of your system is <b1,b2,b3> (Imagine this is a column vector) then how many solutions does your system...
Homework Statement
(i) Reduce the system to echelon form C|d
(ii) For k = -12, what are the ranks of C and C|d? Find the solution in vector form if the system is consistent.
(iii) Repeat part (b) above for k = −18
Homework Equations
Gaussian elimination I used here...
I understand that momentum, rest mass and energy can be put on the sides of a right triangle such that the Pythagorean Theorem suggests E^2=p^2+m^2. I understand that the Dirac equation says E=aypy+axpx+azpz+Bm and that when we square both sides the momentum and mass terms square while the cross...
Homework Statement
The object is made out of multiple parts. The inertia matrices of every part are given. Only one part is rotating. How do I find the total inertia matrix.
Homework EquationsThe Attempt at a Solution
I thought that I could sum the inertia matrices, after tranforming them to...
Hi,
I am studying about circulant matrices, and I have seen that one of the properties of such matrices is the eigenvalues which some combinations of roots of unity.
I am trying to understand why it is like that. In all the places I have searched they just show that it is true, but I would like...
This is something I seek a proof of.
Theorem: Let ## \mbox{det}:\mbox{Mat}_{n\times n}(\mathbb{R}) \rightarrow \mathbb{R}## be the determinant function assigned to a general nxn matrix with real entries. Prove this mapping is continuous.
My attempt. Continuity must be judged in...
Homework Statement
Homework Equations
using nodal analysis
The Attempt at a Solution
https://imgur.com/a/UNEDH
the excel sheet is the matrix i set up then used cramer's rule. I think i got the method down but i just can't find the error so hopefully i overlooked something.
The equation i...
If there is matrix that is formed by blocks of 2 x 2 matrices, what will be the relation between the eigen values and vectors of that matrix and the eigen values and vectors of the sub-matrices?
Homework Statement
Homework Equations
A.A^-1=Identity matrix
Trace of a matrix [tr(A)]is the sum of elements on it's main diagonal.
The Attempt at a Solution
In the given equation,post-multiplying A^-1 (A inverse) on both sides gives A^4=16.
Since the array contains only one element (say...
Here it is a simple problem which is giving me an headache,Recall from class that in order to build an invariant out of spinors we had to introduce a somewhat
unexpected form for the dual spinor, i.e. ߰ψ = ψ†⋅γ0
Then showing that ߰ is invariant depends on the result that (ei/4⋅σμν⋅ωμν)† ⋅γ0 =...
Homework Statement
We can treat the following coupled system of differential equations as an eigenvalue
problem:
## 2 \frac{dy_1}{dt} = 2f_1 - 3y_1 + y_2 ##
## 2\frac{dy_2}{dt} = 2f_2 + y_1 -3y_2 ##
## \frac{dy_3}{dt} = f_3 - 4y_3 ##
where f1, f2 and f3 is a set of time-dependent sources, and...
In Lancaster & Burnell book, "QFT for the gifted amateur", chapter 48, it is explained that, with a special set of ##\gamma## matrices, the Majorana ones, the Dirac equation may describe a fermion which is its own antiparticle.
Then, a Majorana Lagrangian is considered...
Homework Statement
About an endomorphism ##A## over ##\mathbb{C^{11}}## the next things are know.
$$dim\, ker\,A^{3}=10,\quad dim\, kerA^{2}=7$$
Find the
a) Jordan canonical form of ##A##
b) characteristic polynomial
c) minimal polynomial
d) ##dim\,kerA##
When:
case 1: we know that ##A## is...
Homework Statement
Let ##A = \begin{bmatrix} a&b\\c&d \end{bmatrix}## such that ##a+b+c+d = 0##. Suppose A is a row reduced. Prove that there are exactly three such matrices.
Homework EquationsThe Attempt at a Solution
1) ##\begin{bmatrix} 0&0\\0&0 \end{bmatrix}##
2) ##\begin{bmatrix}...
Hi there,
This is a question about numerical analysis used particularly in the computational condensed matter or anywhere where one needs to DIAGONALIZE GIGANTIC DENSE HERMITIAN MATRICES.
In order to diagonalize dense Hermitian matrices size of 25k-by-25k and more (e.g. 1e6-by-1e6) it is not...
For finding the inverse of a matrix A, we convert the expression A = I A (where I is identity matrix), such that we get I = B A ( here B is inverse of matrix A) by employing elementary row or column operations. But why do these operations work? Why does changing elements of a complete row by...
So I have been studying the case of spin 1/2 and I have understood how the formulations work through to find the spin matrices. However I do not get an intuitive understanding of what they mean and why they are formulated the way they are. I follow Griffith's book and in it as he begins to solve...
I have a word problem that I am struggling with. I have been using matrices in this chapter, but I don't understand how it applies or where to start in order to solve this equation. Here is the word problem:
One hundred liters of a 50% solution is obtained by mixing a 60% solution with a 20%...
Hello! I am not really sure I understand the idea of tensors and the difference between them and normal matrices, for example (for rank 2 tensors). Can someone explain this to me, or give me a good resource for this? I don't want a complete introduction to GR math, I just want to understand the...
Hi.
If I have an operator in matrix form eg. < i | x | j > then the matrix of the operator x2 is given by the square of the former matrix. This seems like common sense but how would i prove this using Dirac notation ?
Thanks
Hi,
I'm currently going through Griffith's Particle Physics gamma matrices proofs. There's one that puzzles me, it's very simple but I'm obviously missing something (I'm fairly new to tensor algebra).
1. Homework Statement
Prove that ##\text{Tr}(\gamma^\mu \gamma^\nu) = 4g^{\mu\nu}##...
Hello, I would just like some help clearing up some pretty basic things about hermitian operators and matricies.
I am aware that operators can be represented by matricies. And I think I am right in saying that depending on the basis used the matrices will look different, but all our valid...
So I know that in general, for the ring of ##n \times n## matrices, if ##AB = 0##, then it is not necessarily true that ##A=0## or ##B=0##. However, in other rings, for example the integers ##\mathbb{Z}##, I know that this statement is true. So what property is the ring of matrices lacking such...
Homework Statement
Let ##A## and ##B## be ##n \times n## matrices
1) Suppose ##A^2 = 0##. Prove that ##A## is not invertible.
2) Suppose ##AB=0##. Could ##A## be invertible.
3) If ##AB## is invertible, then ##A## and ##B## are invertible
Homework EquationsThe Attempt at a Solution
1) Suppose...
Homework Statement
Consider the subspace $$W:=\Bigl \{ \begin{bmatrix}
a & b \\
b & a \end{bmatrix} : a,b \in \mathbb{R}\Bigr \}$$ of $$\mathbb{M}^2(\mathbb{R}). $$
I have a few questions about how this can be decomposed.
1) Is there a subspace $$V$$ of...
Homework Statement
[/B]
I know the pauli matrices in terms of the z-basis, but can't find them in terms of the other bases. I would like to know what they are.
Homework Equations
The book says they are cyclic, via the relations XY=iZ, but this doesn't seem to apply when I use this to find the...
Homework Statement
Question is uploaded
I have completed till part iii and obtained correct answers
i. 2
ii. Basis for R:- { ( 2 3 -1 ) , (1 4 2 ) }
Cartesian equation; 2x-y+z=0
iii. Basis for Null:- { ( -3 2 0 1 ) , (2 -3 1 0 ) }
2. The attempt at a solution
I have problem in last part. I...
1. Problem statement : suppose we have a Hermitian 3 x 3 Matrix A and X is any non-zero column vector. If
X(dagger) A X > 0 then it implies that determinant (A) > 0.
I tried to prove this statement and my attempt is attached as an image. Please can anyone guide me in a step by step way to...
Homework Statement
Let ##A## and ##B## be different ##n \times n## with real entries. If ##A^3 = B^3## and ##A^2 B = B^2 A##, can ##A^2 + B^2## be invertible?
Homework EquationsThe Attempt at a Solution
So, first of all I am just trying to interpret the question correctly. Does "can ##A^2 +...
Homework Statement
Let A,B,C,D be commuting n-square matrices. Consider the 2n-square block matrix ##M= \begin{bmatrix}
A & B \\
C & D \\
\end{bmatrix}##. Prove that ##\left | M \right |=\left | A \right |\left | D \right |-\left | B \right |\left | C \right |##. Show that the result may not be...
Homework Statement
Suppose B is a real nonsingular matrix. Show that: (a) BtB is symmetric and (b) BtB is positive definite
2. Homework Equations
N/A
The Attempt at a Solution
I have managed to prove (a) by showing that elements that are symmetric on the diagonal are equal. However I have no...
Is it possible to find matrices that commute but eigenvectors of one matrix are not the eigenvectors of the other one. Could you give me example for it?
I have the following system of equations: ##2t-4s=-2;~-t+2s=-1;~3t-5s=3##. With them, I form the matrix
\begin{bmatrix}
2 & -4 & -2 \\
-1 & 2 & -1 \\
3 & -5 & 3
\end{bmatrix}
Which turns out to be row equivalent to
\begin{bmatrix}
1 & 0 & 11 \\
0 & 1 & 6 \\
0 & 0 & 0
\end{bmatrix}
so...
Homework Statement
Consider the following matrix where * indicates an arbitrary number and a ■ indicates a non zero number.
http://prntscr.com/e4xqkx
[■ * * * * | *]
[0 ■ * * 0 |* ]
[0 0 ■ * * | *]
[0 0 0 0 ■ | *]
(Sorry for poorly formatted matrix. The link above contains a screenshot...
Homework Statement
Let ##V\subset \mathbb{R}^3## be the subspace generated by ##\{(1,1,0),(0,2,0)\}## and ##W=\{(x,y,z)\in\mathbb{R}^3|x-y=0\}##. Find a matrix ##A## associated to a linear map ##f:\mathbb{R}^3\rightarrow\mathbb{R}^3## through the standard basis such that its nullspace is ##V##...
Hi everyone. Excuse me for my poor English skills. I did an exam today and my exam result was 13 of 40. I don't understand why it was my result, because while doing the exam I though I was doing it well, then the result was a surprise for me. I will write down the questions and after show my...
Hi everyone. Excuse me for my poor English skills. I did an exam today and my exam result was 13 of 40. I don't understand why it was my result, because while doing the exam I though I was doing it well, then the result was a surprise for me. I will write down the questions and after write my...
Homework Statement
Build the matrix A associated with a linear transformation ƒ:ℝ3→ℝ3 that has the line x-4y=z=0 as its kernel.
Homework Equations
I don't see any relevant equation to be specified here .
The Attempt at a Solution
First of all, I tried to find a basis for the null space by...
I am currently brushing on my linear algebra skills when i read this
For any Matrix A
1)A*At is symmetric , where At is A transpose ( sorry I tried using the super script option given in the editor and i couldn't figure it out )
2)(A + At)/2 is symmetric
Now my question is , why should it be...
This is not part of my coursework but a question from a past paper (that we don't have solutions to).
1. Homework Statement
Construct the matrix ##\sigma_{-} = \sigma_{x} - i\sigma_{y}## and show that the states resulting from ##\sigma_{-}## acting on the eigenstates of ##\sigma_{z} ## are...
Hi everyone
I need raising and lowering operators for l=3 (so it should be 7 dimensional ).
is it enough to use this formula:
(J±)|j, m > =sqrt(j(j + 1) - m(m ± 1))|j, m ± 1 >
The main problem is about calculating lx=2 for a given wave function , I know L^2 and Lz but I need L+ and L- to solve...
Hi PF!
I have two matrices of equal dimensions. I would like to plot them such that row ##i## of matrix 1 corresponds the x-axis and row ##i## of matrix 2 corresponds to the y axis, so that row ##i## of matrix 1 and matrix 2 together give a coordinate. Does anyone know how to do this quickly...
Hey! :o
Let $\mathbb{K}$ be a fiels and $A\in \mathbb{K}^{p\times q}$ and $B\in \mathbb{K}^{q\times r}$.
I want to show that $\text{Rank}(AB)\leq \text{Rank}(A)$ and $\text{Rank}(AB)\leq \text{Rank}(B)$.
We have that every column of $AB$ is a linear combination of the columns of $A$, or not...