Quantum field theory Definition and 587 Threads

  1. W

    I Renormalization of scalar field theory

    I was reading about the renormalization of ##\phi^4## theory and it was mentioned that in order to renormalize the 2-point function ##\Gamma^{(2)}(p)## we add the counterterm : \delta \mathcal{L}_1 = -\dfrac{gm^2}{32\pi \epsilon^2}\phi^2 to the Lagrangian, which should give rise to a...
  2. Demystifier

    A Philosophy of quantum field theory

    I usually don't read papers on philosophy of quantum field theory, but this one is really good: http://philsci-archive.pitt.edu/8890/ In particular, the prelude which I quote here is a true gem: "Once upon a time there was a community of physicists. This community be- lieved, and had good...
  3. fabstr1

    Simplification of the Proca Lagrangian

    Hello, I'm trying to figure out where the term (3) came from. This is from a textbook which doesn't explain how they do it. ∂_μ(∂L/(∂(∂_μA_ν)) = ∂L/∂A_ν (1) L = -(1/16*pi) * ( ∂^(μ)A^(ν) - ∂^(ν)A^(μ))(∂_(μ)A_(ν) - ∂_(ν)A_(μ)) + 1/(8*pi) * (mc/hbar)^2* A^ν A_ν (2) Here is Eq (1) the...
  4. M

    I Condtion on transformation to solve the Dirac equation

    The problem is given in the summary. My attempt: Assume that ##\psi^\prime (x^\prime)## is a solution of the Dirac equation in the primed frame, given the transformation ##x\mapsto x^\prime :=\Lambda^{-1}x## and ##\psi^\prime (x^\prime)=S\psi(x)##, we have $$ \begin{align*} 0&=(\gamma^\mu...
  5. tomdodd4598

    I Renormalisation scale and running of the φ^3 coupling constant

    I am still rather new to renormalising QFT, still using the cut-off scheme with counterterms, and have only looked at the ##\varphi^4## model to one loop order (in 4D). In that case, I can renormalise with a counterterm to the one-loop four-point 1PI diagram at a certain energy scale. I can...
  6. Diracobama2181

    A Exploring Solutions to $\phi$ and $\ket{\overrightarrow{P}}$

    I already know this quantity diverges, however I was wondering where to go from there. Any resource would be appreciated. Thank you. Useful Information: $$\phi=\int\frac{d^3k}{2\omega_k (2\pi)^3}(\hat{a}(\overrightarrow{k})e^{-ikx}+\hat{a}(\overrightarrow{k})^{\dagger}e^{ikx}))$$...
  7. N

    A General Covariance in Quantum Field Theory

    All physical laws have to be Lorentz invariant according to a lecture I just watched. Why is general covariance (which is more general than Lorentz invariance) not a requirement for all laws of physics? Are there any quantum gravity theories that take the approach of adding general covariance to...
  8. Q

    A Is The Seiberg-Witten Map Unique?

    From my understanding the Seiberg-Witten map is a way to convert a non-commutative field theory into a commutative field theory. For example for the commutative relation between positions [x,y]=i*n, the common SW map I see in the literature for non commutative quantum mechanics is x->...
  9. Phylosopher

    Quantum Is Zuber's Quantum Field Theory textbook any good?

    Hi, I have been studying Quantum Field Theory this semester! It seems that Shwartz and Peskin are the most popular choices when it comes to studying QFT. But apparently my professor have another "old" preference. He strongly suggested that we learn QFT from Zuber's book. I have looked at the...
  10. S

    A Converting between field operators and harmonic oscillators

    Suppose we have a Hamiltonian containing a term of the form where ∂=d/dr and A(r) is a real function. I would like to study this with harmonic oscillator ladder operators. The naïve approach is to use where I have set ħ=1 so that This term is Hermitian because r and p both are.*...
  11. M

    What are the prerequisites to study quantum field theory?

    Summary:: What are the prerequisites to study quantum field theory? What are the prerequisites to study quantum field theory?
  12. S

    A Confusions on QED renormalization

    In many QFT textbooks, we usually see the calculations of vertex function, vacuum polarization and electron self-energy. For example, one calculates the vacuum polarization to correct photon propagator $\langle{\Omega}|T\{A_{\mu}A_{\nu}\}|\Omega\rangle$, where $|\Omega\rangle$ is the ground...
  13. T

    A Evaluating Matrix Spin Dependent Term in Dirac Quadratic Equation

    I derive the quadratic form of Dirac equation as follows $$\lbrace[i\not \partial-e\not A]^2-m^2\rbrace\psi=\lbrace\left( i\partial-e A\right)^2 + \frac{1}{2i} \sigma^{\mu\nu}F_{\mu \nu}-m^2\rbrace\psi=0$$ And I need to find the form of the spin dependent term to get the final expression $$g...
  14. M

    I Calculating 2nd Order Scattering Amplitude: Feynman Diagrams

    In the following I will try to deduce the scattering amplitude for a specific interaction. My question is at the bottom, the entire rest is my reasoning to explain how I came to the results I present. My working Let's assume I would like to calculate the second order scattering amplitude in ##...
  15. Adwit

    A Quantum Field Theory: 3-4 Equation Steps Explained

    I understand how do 3 no. equation come from 1 & 2 no. equation. But I am struggling to understand how do 4 no. equation come from 3 no. equation. Will anyone do the steps between 3 no. equation and 4 no. equation, please ?
  16. J

    A Looking Under the Hood of Feynman Diagrams

    I'm currently working my way through Griffith's Elementary Particles text, and I'm looking to understand what's going on with the underlying Hilbert space of a system described using a Feynman diagram. I'm fairly well acquainted with non relativistic QM, but not much with QFT. In particular, I'd...
  17. A

    I Frank Wilczek on Virtual Particles and Summing diagrams....

    Hi all, - an initial apology - there are a large number of threads on virtual particles on the site, and I apologize for adding another one. I had two questions - on a related note, the guidance provided by @A. Neumaier's FAW on virtual particles has been highly valuable for a novice . 1) Upon...
  18. A

    I 'Off-shell' particle in an external field....

    Silly question but could someone explain why a real, 'observable' particle is said to be 'off-shell' in an external field? @A. Neumaier 's excellent FAQ notes that the mass shell constraints ceases to have meaning in this case. I'm just not fully clear on why (probably obvious) given that energy...
  19. N

    Calculation of g-factor correction in Peskin p. 196

    I'm reading peskin QFT textbook. In page 196 eq. (6.58) it says $$F_2(q^2=0)=\frac{\alpha}{2\pi}\int ^1_0 dx dy dz \delta (x+y+z-1) \frac{2m^2z(1-z)}{m^2(1-z)^2}\\=\frac{\alpha}{\pi}\int ^1_0 dz\int ^{1-z}_0 dy \frac{z}{1-z}=\frac{\alpha}{2\pi}$$ I confirmed the conversion from the first line...
  20. John Greger

    A Understanding Hermiticity of Actions in QFT for Checking and Confirming

    Hi! In QFT we are usually interested in actions that are hermitian. Say we are looking at scattering of Dirac fermions with a real coupling constant g, whose Lagrangian is given by: $$L= \bar{\psi}(i \gamma_{\mu} \partial^{\mu} -m) \psi - \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi -...
  21. S

    A QFT topics for entanglement entropy

    I want to know what are the QFT topics that I need to understand in order to proceed in reading papers on entanglement entropy such as, Entanglement Entropy and Quantum Field Theory Entanglement entropy in free quantum field theory Entanglement entropy: holography and renormalization group An...
  22. D

    Particle Schwartz and QFT Following Tong's Notes

    Hello, I have been following Tong's notes on QFT and have found them to be a great introduction. I am almost at the end and am trying to figure out how to proceed. I have seen recommendations on David Skinner's notes, but I think I want to use a textbook either with Skinner's notes or maybe...
  23. saadhusayn

    Calculating effective action at two loops

    Does this mean that the expression for the above vertex is $$ -\frac{g}{2}\epsilon^{abx}\epsilon^{cdx}\int d\tau \langle A_{a} (\tau) A_{c} (\tau)\rangle \langle Y^{i}_{b} (\tau)Y^{i}_{d}(\tau) \rangle $$
  24. saadhusayn

    A Calculating the ghost field in the Becker and Becker paper

    This is the paper that I refer to. I'm trying to figure out the ghost action (Equation 2.16) in the background field gauge. I am attempting to use Srednicki's (chapter 78) expression for the ghost field in the background gauge. However, I am missing out on a √g coefficient in front of the term...
  25. Tiptoeingelephants

    I Is a Particle Simply the Manifested Kinetic Energy of Its Quantum Field?

    Trying to better understand quantum field theory, I've read that particles are created when it becomes an exitation of its quantum field. Would it then be right to think of a particle as the manifested kinetic energy of its field?
  26. Quantum Alchemy

    I Questions about QFT and the reality of subatomic particles

    I've been reading about Quantum Field Theory and what it says about subatomic particles. I've read that QFT regards particles as excited states of underlying quantum fields. If this is the case, how can particles be regarded as objective? It seems to me that this also removes some of the...
  27. sakh1012

    A Dirac Field quantization and anti-commutator relation

    Can anyone explain while calculating $$\left \{ \Psi, \Psi^\dagger \right \} $$, set of equation 5.4 in david tong notes lead us to $$Σ_s Σ_r [b_p^s u^s(p)e^{ipx} b_q^r†u^r†(q)e^{-iqy}+ b_q^r †u^r†(q)e^{-iqy} b_p^s u^s(p)e^{ipx}].$$ My question is how the above mentioned terms can be written as...
  28. D

    A Understanding Harmonic oscillator conventions

    I don't quite understand how he got the line below. By using discrete time approximation, we can get the second order time expression. But i don't see how by combining terms he is able to get such expression.
  29. Y

    Primary calculation involving the Dirac gama matrices

    When working on the exercise 3.2 of Peskin's QFT, I find one of the calculating steps confused for me. I read the solution, which is showed in the picture. I just don't understand the boxed part. I know it involved the Dirac equation, and the solution seems to treat the momentum as a operator...
  30. L

    Finding Cartan Subalgebras for Matrix Algebras

    This is one problem from Robin Ticciati's Quantum Field Theory for Mathematicians essentially asking us to find Cartan subalgebras for the matrix algebras ##\mathfrak{u}(n), \mathfrak{su}(n),\mathfrak{so}(n)## and ##\mathfrak{so}(1,3)##. The only thing he gives is the definition of a Cartan...
  31. M

    How Do You Evaluate Wick Contractions in Scalar QED with Mixed Fields?

    While writing out the Dyson series due to the time ordering above I encountered the two expressions $$T(\mathcal{L}_{int}(x))\quad \text{and}\quad T(\mathcal{L}_{int}(x)\mathcal{L}_{int}(y))$$ I was able to write out the first term in terms of contractions using Wick's theorem and then finally...
  32. RicardoMP

    A Vector and Axial vector currents in QFT

    I'm currently working out quantities that include the vector and axialvector currents ##j^\mu_B(x)=\bar{\psi}(x)\Gamma^\mu_{B,0}\psi(x)## where B stands for V (vector) or A (axialvector). The gamma in the middle is a product of gamma matrices and the psi's are dirac spinors. Therefore on the...
  33. M

    Dyson's series and the time derivative

    I'm having a hard time understanding how exactly to evaluate the expression} $$\partial_t \mathcal{T}\exp\left(-i S(t)\right)\quad \text{where}\quad S(t)\equiv\int_{t_0}^tdu \,H(u) .$$ The confusing part for me is that if we can consider the following: $$\partial_t \mathcal{T}\exp\left(-i...
  34. RicardoMP

    Feynman one-loop integral ##I_{21}##

    Starting from the general formula: $$I_{n,m}=\frac{1}{(4\pi)^2}\frac{\Gamma(m+2-\frac{\epsilon}{2})}{\Gamma(2-\frac{\epsilon}{2})\Gamma(n)}\frac{1}{\Delta^{n-m-2}}(\frac{4\pi M^2}{\Delta})^{\frac{\epsilon}{2}}\Gamma(n-m-2+\frac{\epsilon}{2})$$ I arrived to the following...
  35. weningth

    A How to deal with colour indices on spinors

    I want to calculate transition amplitudes in QCD for processes like ##q(k)q^\prime(p)\rightarrow q(k^\prime)q^\prime(p^\prime)##, where ##q,q^\prime## are quarks. However, I am unsure what to do with the colour indices of the quark spinors upon squaring the matrix element. For the sake of...
  36. M

    How to Determine the Noether Current for a Given Symmetry and Lagrangian?

    This is my first time dealing with scaling symmetry, so I'm sorry if the following is fundamental wrong. My approach was the same as if I was trying to show the same for translation or Lorentz symmetry. We have $$\delta\phi(x)= \phi'(x')-\phi(x)=...
  37. M

    Show that the given Green Function is the propagator of a certain Lagrangian

    My fundamental issue with this exercise is that I don't really know what it means to "show that X is a propagator".. Up until know I encountered only propagators of the from ##\langle 0\vert [\phi(x),\phi(y)] \vert 0\rangle##, which in the end is a transition amplitude and can be interpreted as...
  38. RicardoMP

    A What Is the Renormalized Gluon Dressing Function?

    Consider, for example, the gluon propagator $$D^{\mu\nu}(q)=-\frac{i}{q^2+i\epsilon}[D(q^2)T^{\mu\nu}_q+\xi L^{\mu\nu}_q]$$ What exactly is the renormalized gluon dressing function ##D(q^2)## and what is its definition? My interest is in knowing if I can then write the bare version of this...
  39. RicardoMP

    A Trace of a product of Dirac Matrices in a Fermion loop

    I'm working out the quark loop diagram and I've drawn it as follows: where the greek letters are the Lorentz and Dirac indices for the gluon and quark respectively and the other letters are color indices. For this diagram I've written...
  40. G

    A Is renormalization the ideal solution?

    Quantum gravity theories and GUTs are nonrenormalizable theories, but does this actually mean that these theories must be flawed, or does it mean that renormalization must be a flawed concept, or is this not actually a problem? If it is impossible to produce a renormalizable quantum gravity...
  41. R

    I Calculating a particular amplitude with Feynman diagrams

    So I’m trying to compute the probability amplitude of an electron with momentum p1 and a positron with momentum p2 annihilating into a photons with momenta q1 and q2. My question is how do you use Feynman diagrams to calculate the first and second order expansions (seen in the third image)? I...
  42. takunitoche

    A Derivation of the Yang-Mills 3 gauge boson vertex

    Hello everyone, I am stuck in the derivation of the three gauge-boson-vertex in Yang-Mills theories. The relevant interaction term in the Lagrangian is$$\mathcal{L}_{YM} \supset g \,f^{ijk}A_{\mu}{}^{(j)} A_{\nu}{}^{(k)} \partial^{\mu} A^{\nu}{}^{(i)} $$ I have rewritten this term using...
  43. takunitoche

    Three gauge boson Yang-Mills vertex

    Hello everyone, I am stuck in deriving the three gauge-boson-vertex in Yang-Mills theories. The relevant interaction term in the Lagrangian is $$\mathcal{L}_{YM} \supset g \,f^{ijk}A_{\mu}{}^{(j)} A_{\nu}{}^{(k)} \partial^{\mu} A^{\nu}{}^{(i)} $$ I have rewritten this term using the...
  44. D

    Calculating Divergent Amplitude in Phi-4 Theory

    For the diagram In scalar field theory, I have obtained an integral which looks like $$\int_{0}^{\Lambda} \frac{d^4 q}{(2\pi)^4} \frac{i}{q^2 - m^2 + i\varepsilon} \frac{i}{(p - q)^2 - m^2 + i\varepsilon}$$ I am required to calculate this and obtain the divergent amplitude $$i\mathcal{M} =...
  45. G

    I Quantum field theory: an informative approach

    I'm looking for a book that describes the quantum field theory without going deeply in the theory with formulas or complex description of the mathematics under the theory. I know that this theory is really complex and it needs a deep knowledge of quantum physics in order to be understood. But...
  46. M

    A Gravitational dressing in quantum field theory

    In quantum field theory, a dressed particle is a particle ("bare particle") considered in combination with certain secondary effects that it produces (e.g. the virtual pair creation involved in vacuum polarization). The dressed states are regarded as more physical, hence closer to reality. Axel...
  47. Sophrosyne

    Is the concept of "wave function collapse" obsolete?

    Summary: In the past, physicists talked of the phenomenon of "wave function collapse" very freely, whereas now there seems to be some reservation about it. Why? In reading older popular physics literature, physicists used to talk about "wave function collapse" freely and more often...
  48. B

    A Are unstable particles ever really external lines in QFT?

    Let's for example consider the Z boson. It can't directly be detected; so is it ever really correct to draw it as an external line on a Feynman diagram? I've seen processes involving it before be written as something -> Z + something, then Z -> ... but since unstable particles aren't really on...
  49. R

    I Young physicist in seek of guidance

    Is there anyone on here who could help me fill in my gaps in quantum field theory up to renormalization? I know how to canonically quantize a theory and how to use scalars (spin 0), vectors (spin 1) and spinors (spin 1/2) but lack more advanced knowledge like renormalization which I could...
  50. SisypheanZealot

    Dirac Delta using periodic functions

    I know it is something simple that I am missing, but for the life of me I am stuck. So, I used the identity ##sin(a)sin(b)+cos(a)cos(b)=cos(a-b)## which gives me $$\int^{\infty}_{-\infty}dx\:f(x)\delta(x-y)=\int^{\infty}_{-\infty}dx\:f(x)\frac{1}{2L}\sum^{\infty}_{n=-\infty}\lbrace...
Back
Top