Quantum field theory Definition and 587 Threads

  1. P

    I Confusion about Scattering in Quantum Electrodynamics

    When it comes to scattering in QED it seems only scattering cross sections and decay rates are calculated. Why is that does anyone calculate the actual evolution of the field states or operators themselves like how the particles and fields evolve throughout a scattering process not just...
  2. D

    Question related to completeness relation for photons

    Hi Would you explain to me what is the q^ and how they are related to completeness.How can i solve this exercise?It is from "Quarks and leptons An Introductory course in Modern Particle Physics" of Halzen and Alan D.Martin.Also, can you point me to a useful bibliography?
  3. bella987

    Deriving the commutation relations of the Lie algebra of Lorentz group

    This is the defining generator of the Lorentz group which is then divided into subgroups for rotations and boosts And I then want to find the commutation relation [J_m, J_n] (and [J_m, K_n] ). I'm following this derivation, but am having a hard time to understand all the steps: especially...
  4. R

    Expressing Feynman Green's function as a 4-momentum integral

    I am a bit confused on how we can just say that (z',p) form a 4-vector. In my head, four vectors are sacred objects that are Lorentz covariant, but now we introduced some new variable and say it forms a 4-vector with momentum. I understand that these are just integration variables but I still do...
  5. Sciencemaster

    I Finding ##\partial^\mu\phi## for a squeezed state in QFT

    I'm trying to apply an operator to a massless and minimally coupled squeezed state. I have defined my state as $$\phi=\sum_k\left(a_kf_k+a^\dagger_kf^*_k\right)$$, where the ak operators are ladder operators and fk is the mode function $$f_k=\frac{1}{\sqrt{2L^3\omega}}e^{ik_\mu x^\mu}$$...
  6. A

    A Schrodinger equation in quantum field theory

    What is the Schrodinger equation in QFT? is it the nonrelativistic approximation of a Klein-Gordon scalar field? or Is there more? I have read that the Schrodinger equation describes a QFT in 0 dimensions. I accept every answer
  7. C

    A Multiparticle Relativistic Quantum Mechanics in an external potential

    It is often argued that Dirac Equation is not valid as relativistic quantum mechanics requires the creation of antiparticles. But, there are also some arguments that suggest otherwise. For example, I saw Arnold Neumaier's website on this that there are multiparticle relativistic quantum...
  8. M

    Non quadratic potentials and quantization in QFT (home exercise)

    I noticed that ##V(\phi)## has nonzero minima, therefore I found the stationary points as ##{{\partial{V}}\over{\partial\phi}}=0##, and found the solutions: $$\phi^0_{1,2}=-{{m}\over{\sqrt{\lambda}}}\quad \phi^0_3={{2m}\over{\sqrt{\lambda}}}$$ of these, only ##\phi^0_3## is a stable minimum...
  9. V

    I Uncertainty Principle in QFT & Early Universe Conditions

    I have a question related to the uncertainty principle in QFT and if it is related to the early universe conditions. Do we still have four-vector momentum and position uncertainty relation in relativistic quantum theory? I have been following the argument related to the early universe and the...
  10. D

    I Equation which is related with the Lorentz invariant quantities

    Hi every one.How can i prove the below equation? And then that it's Lorentz invariant quantitude ? Thanks for your help
  11. L

    B Quantum field theory and wave particle duality

    I recently watched this lecture "Quantum Fields: The Real Building Blocks of the Universe" by David Tong where the professor provides a succinct explanation of QFT in about 6 minutes around the midway mark. The main point being that there are fields for particles and fields for forces and the...
  12. R

    Addressing Misconceptions in Popular Science: A Call for Clear Communication

    I am not a Physicist. I am a retired Social Worker and Public Health Administrator who has taken an interest in Cosmology and Quantum Mechanics/Quantum Field Theory. I am reading as much popular literature in the field as I can as well as watching the excellent presentations on YouTube. I try...
  13. A. Neumaier

    A Ensembles in quantum field theory

    Then please explain how the transition in conceptual language from a single quantum field (extending all over spacetime, or at least over the lab during a day) to an ensemble of particles can be justified from the QFT formalism.
  14. josephsanders

    High Energy Literature for introduction to O(N) vector model

    TL;DR Summary: Looking for literature on O(N) vector model Hello, We have been going over the O(N) vector model in my QFT class but the notes are not very detailed and we are not using a textbook. Does anyone know of a good QFT book which goes over this material? I have a copy of Shrednicki...
  15. lindberg

    I Unruh, Haag et al.: No Room for Particles in Quantum Field Theory?

    In a paper by Bain (2011), particles are left with little ontological value because of the Reeh-Schlieder theorem, the Unruh effect and Haag's theorem. The author claims (and here I am copying his conclusion): First, the existence of local number operators requires the absolute temporal metric...
  16. lindberg

    I Has the Unruh Effect ever been observed?

    A recent paper (June 2021) claims to have observed the Unruh effect: https://arxiv.org/abs/1903.00043 A more recent article (with links to the papers inside it) talks about a possible way to detect it (Barbara Soda et al., April 2022), while there are still skeptics (Anatoly Svidzinsky). Here is...
  17. lindberg

    I Haag's Theorem: Explain Free Field Nature

    What is the main reason for a free field staying free according to Haag's theorem?
  18. R

    I Interpreting ##A^{\mu}(x)|0\rangle## and ##\psi (x) |0\rangle##

    I can understand how ##\phi (x)|0\rangle## represents the wavefunction of a single boson localised near ##x##.I don't understand how the same logic appies to ##A^{\mu}(x)|0\rangle## and ##\psi |0\rangle##. Both of these operators return a four component wavefunction when operated on the vaccuum...
  19. Tan Tixuan

    A How to take non-relativistic limit of the following Lagrangian

    In https://arxiv.org/pdf/1709.07852.pdf, it is claimed in equation (1) and (2) that when we take non-relativistic limit, the following Lagrangian (the interaction part) $$L=g \partial_{\mu} a \bar{\psi} \gamma^{\mu}\gamma^5\psi$$ will yield the following Hamiltonian $$H=-g\vec{\nabla} a \cdot...
  20. A. Neumaier

    A Exploring the Limits of Quantum Mechanics: David Wallace's Manuscript (2022)

    David Wallace, The sky is blue, and other reasons quantum mechanics is not underdetermined by evidence, Manuscript (2022). arXiv:2205.00568. From the Abstract: ''I argue that there as yet no empirically successful generalization of'' [Bohmian Mechanics and dynamical-collapse theories like the...
  21. gremory

    A S-Matrix in Quantum Field Theory

    Hello, i need help with the S-matrix. From what i understand, with the S-matrix i would be able to compute the scattering amplitude of some processes, is that correct? If so, how would i be able to do that if i have some field ##\phi(x,t)## in hands? Is that possible?
  22. Tan Tixuan

    I Classical field in quantum field theory?

    In quantum field theory, we have the following expansion on a scalar field (I follow the convention of Schwarz's book) $$\phi(\vec{x},t)=\int d^3 p \frac{a_p exp(-ip_\mu x^\mu)+a_p^{\dagger}exp(ip_\mu x^\mu)}{(2\pi)^3 \sqrt{2\omega_p}} \quad p^{\mu}=(\omega_p,\vec{p})$$ With commutation relation...
  23. E

    I Commutation relations for an interacting scalar field

    Hi there, In his book "Quantum field theory and the standard model", Schwartz assumes that the canonical commutation relations for a free scalar field also apply to interacting fields (page 79, section 7.1). As a justification he states: I do not understand this explanation. Can you please...
  24. StevieTNZ

    B "Quantum Field Theory, as Simply as Possible" upcoming publication

    I came across this upcoming book -- https://press.princeton.edu/books/hardcover/9780691174297/quantum-field-theory-as-simply-as-possible -- peer reviewed as it is published by Princeton University Press, which is due to be published in October. I've already ordered a copy coming from the UK. It...
  25. S

    Relativistic correction to Coulomb Potential in SQED

    I have derived the Coulombian potential as an effective potential between two spinless charged particle taking the non-relativitic approach on the scattering amplitude obtained in terms of the Feynman rules in SQED. The scattering amplitudes are: I'm using the gauge in which xi = 1. How could...
  26. D

    Solid State Texts on Topological Effects/Phases in Materials

    I am looking to learn about these topological effects or phases in solids. More specifically, I'm trying to find a set of lecture notes or a textbook or some other text that do not shy away from discussing homotopy classes and the application algebraic topology to describe these materials. I...
  27. P

    A Clarifying Fradkin's Terminology on Quantum Numbers of Gauge Groups

    Hi, I'd like to clarify the following terminology (Fradkin, Quantum Field Theory an integrated approach) "carry the quantum numbers of the representation of the gauge group": Does the author basically mean that the wilson loop is a charged operator, in a sense that it transforms non-trivially...
  28. J

    A Measurement in QFT: Mapping Fields to Theory's Math Formalism

    How do we map experimental measurements of quantum fields, such as those seen in accelerators, to the theory's mathematical formalism? When we see images of particle tracks produced in accelerators such as the LHC, I think it's safe to say a measurement (or series of measurements) has been...
  29. Wizard

    A Orthogonality of variations in Faddev-Popov method for path integral

    Hi there, I've been stuck on this issue for two days. I'm hoping someone knowledgeable can explain. I'm working through the construction of the quantum path integral for the free electrodynamic theory. I've been following a text by Fujikawa ("Path Integrals and Quantum Anomalies") and also...
  30. BadgerBadger92

    Non Mathematical Quantum Field Theory Books?

    Are there any QFT books that use little to no math? If there is a little math that is okay. I don't know much about math. I am looking for good explanations on how it works without math. Any help would be great!
  31. E

    Who is Edward G. Timoshenko, PhD in theoretical physics?

    Edward G. Timoshenko PhD, MSc, EurPhys, CPhys MInstP, CChem MRSC Web site: https://www.EdTim.live Bio: 2011- Researcher, TEdQz Research after an early retirement from UCD 2005 - 2011 Senior Lecturer in Physical Chemistry, School of Chemistry and Chemical Biology, UCD 1997 College Lecturer...
  32. J

    A Quantum Field theory vs. many-body Quantum Mechanics

    A lot of people say that Quantum Field theory (QFT) an Quantum Mechanics (QM) are equivalent. Yet, I've found others who dispute these claims. Among the counter-arguments (which I admittedly do not have the expertise to pick apart and check their validity in full) are the following: 1) While QFT...
  33. J

    A Concept of wavefunction and particle within Quantum Field Theory

    -1st: Could someone give me some insight on what a ket-state refers to when dealing with a field? To my understand it tells us the probability amplitude of having each excitation at any spacetime point, but I don't know if this is accurate. Also, we solve the free field equation not for this...
  34. T

    A QFT with vanishing vacuum expectation value and perturbation theory

    In This wikipedia article is said: "If the quantum field theory can be accurately described through perturbation theory, then the properties of the vacuum are analogous to the properties of the ground state of a quantum mechanical harmonic oscillator, or more accurately, the ground state of a...
  35. Ebi Rogha

    I Vacuum energy and Energy conservation

    Also, I have heard from physicists that vacuum energy fluctuation (creation and destruction of virtual particles) violates energy conservation. The reason, they justify, is based on uncertainty principle (energy-time form of uncertainty principle), energy can exist and disappear for a very short...
  36. DaniV

    The 1-loop anomalous dimension of massless quark field

    I tried as first step to find Z_q the renormalization parameter, to do so I did the same procedure to find the renormalization parameter of the gauge field of the gluon A^a_\mu when a is representation index a \in {1,2,...,N^2-1} such that A^{a{(R)}}_{\mu}=\frac{1}{\sqrt{Z_A}}A^{a}_{\mu}...
  37. Tianluo_Qi

    Quantum Reading list recommendation for HEP-ph to HEP-th/math-ph transition

    One sentence summarization For a student initially working on a more phenomenological side of the high energy physics study, what is the recommendation of introductory reading materials for them to dive into a more mathematically rigorous study of the quantum field theory. Elaboration...
  38. Mirod

    Zee QFT problem I.4.1: inverse square laws in (D+1)-dimensions

    I tried to do it for 2+1 D (3+1 is done in the text, by writing the integral in spherical coordinates and computing it directly). In 2+1 D I wrote it as: E = - \int \frac{d^2 k}{ (2\pi)^2 } \frac{e^{kr cos\theta}}{k^2 + m^2} = - \int_0^{\infty} \int_0^{2\pi} \frac{d k d\theta}{ (2\pi)^2 }...
  39. J

    Proof involving exponential of anticommuting operators

    For ##N=1##, I have managed to prove this, but for ##N>1##, I am struggling with how to show this. Something that I managed to prove is that $$\langle\psi |b_k^\dagger=-\langle 0 | \sum_{n=1}^N F_{kn}c_n \prod_{m=1\neq k, l}^N \left(1+b_m F_{ml}c_l \right)$$ which generalizes what I initially...
  40. DaniV

    RG flow of quadrupole coupling in 6+1 dimension electrostatic problem

    I tried to do a Euler Lagrange equation to our Lagrangian: $$\frac{S_\text{eff}}{T}=\int d^6x\left[(\nabla \phi)^2+(\nabla \sigma)^2+\lambda\sigma (\nabla \phi)^2\right]+\frac{S_{p.p}}{T}$$ and then I would like to solve the equation using perturbation theory when ##Q## or somehow...
  41. snypehype46

    Exercise involving Dirac fields and Fermionic commutation relations

    I'm trying to the following exercise: I've proven the first part and now I'm trying to do the same thing for fermions. The formulas for the mode expansions are: What I did was the following: $$\begin{align*} \sum_s \int d\tilde{q} \left(a_s(q) u(q,s) e^{-iq \cdot x}+ b_s^\dagger(q) v(q,s)...
  42. A

    Quantum Resources for learning Quantum Field Theory

    hello :) i would very much like study some quantum field theorie, but have not previously study any regular quantum mechanic (i am not so interest in regular quantum mechanic, but more the relativistic theories). so i ask, this is possible or not? to what extent knowledge of regular quantum...
  43. M

    I How to determine matching coefficient in Effective Field Theory?

    Assume that I have the Lagrangian $$\mathcal{L}_{UV} =\frac{1}{2}\left[\left(\partial_{\mu} \phi\right)^{2}-m_{L}^{2} \phi^{2}+\left(\partial_{\mu} H\right)^{2}-M^{2} H^{2}\right] -\frac{\lambda_{0}}{4 !} \phi^{4}-\frac{\lambda_{2}}{4} \phi^{2} H^{2},$$ where ##\phi## is a light scalar field...
  44. M

    Showing that this identity involving the Gamma function is true

    My attempt at this: From the general result $$\int \frac{d^Dl}{(2\pi)^D} \frac{1}{(l^2+m^2)^n} = \frac{im^{D-2n}}{(4\pi)^{D/2}} \frac{\Gamma(n-D/2)}{\Gamma(n)},$$ we get by setting ##D=4##, ##n=1##, ##m^2=-\sigma^2## $$-\frac{\lambda^4}{M^4}U_S \int\frac{d^4k}{(2\pi)^4} \frac{1}{k^2-\sigma^2} =...
  45. M

    How to translate expression into momentum-space correctly

    This seems rather straight forward, but I can't figure out the details... Generally speaking and ignoring prefactors, the Fourier transformation of a (nicely behaved) function ##f## is given by $$f(x)= \int_{\mathbb{R}^{d+1}} d^{d+1}p\, \hat{f}(p) e^{ip\cdot x} \quad\Longleftrightarrow \quad...
  46. M

    Mass correction in ##\phi^4##-theory

    Before I start, let me say that I have looked into textbooks and I know this is a standard problem, but I just can't get the result right... My attempt goes as follows: We notice that the amplitude of this diagram is given by $$\begin{align*}K_2(p) &= \frac{i(-i...
  47. S

    I Matrix construction for spinors

    I'm reading the book QFT by Ryder, in the section where ##\rm{SU(2)}## is discussed. First, he considered the group of ##2 \times 2## unitary matrices ##U## with unit determinant such that it has the form, $$U =\begin{bmatrix} a & b \\ -b^* & a^* \end{bmatrix}, \qquad \xi = \begin{bmatrix}...
  48. steve1763

    A Exploring Free and Interaction Terms of L in Quantum Field Theory

    With free part L=-½(∂Φ)^2 -½m^2 Φ^2 and interaction term L=½gΦ^2Any help would be appreciated, thank you.
  49. Haorong Wu

    Quantum Anyone tried "Problem Book in Quantum Field Theory" by Radovanovic?

    It is a wonderful book for learning QFT. Interesting problems with detailed solutions. I have tried the problems from chapter 1 to chapter 7. In most chapters, I could at least solve some part of the problems. But I got stuck in chapter 4, the Dirac equation. I could not solve any of the...
Back
Top