Homework Statement
[/B]
Question:
(With the following definitions here: )
- Consider ##L_0|x>=0## to show that ##m^2=\frac{1}{\alpha'}##
- Consider ##L_1|x>=0 ## to conclude that ## 1+A-2B=0##
- where ##d## is the dimension of the space ##d=\eta^{uv}\eta_{uv}##
For the L1 operator I am...
Hi all,
This is likely a naive question, following up on something @vanhees71 posted some time ago in another thread:
My question is the following - if we take an electron that has, for example, absorbed a photon, is the portion of the wavefunction representing the electron in a lower energy...
Homework Statement
Consider the process of decay of a muon into one electron, one electron antineutrino and one muon neutrino using the Fermi theory. Assume the matrix element is, ignoring the electron's and the two neturino's masses,
|\mathcal{M}|^2 = 32G_F^2(m^2-2mE)mE
being E the electron...
Hello,
I am new to this.
As I understand it, the difference between the quantum field theory and string theory is that in the former, physical field is considered as the fundamental reality, while in the latter it is believed that everything comes out of strings. My question is, by everything do...
Homework Statement
STATEMENT
##\hat{H}=\int \frac{d^3k}{(2\pi)^2}w_k(\hat{a^+(k)}\hat{a(k)} + \hat{b^{+}(k)}\hat{b(k)})##
where ##w_k=\sqrt{{k}.{k}+m^2}##
The only non vanishing commutation relations of the creation and annihilation operators are:
## [\alpha(k),\alpha^{+}(p)] =(2\pi)^3...
Hi all - apologies, I'm starting a new thread here for something buried at the end of another thread - but I think the topic of that thread had changed sufficiently to warrant a more succinct top-level post. Thanks very much to PeterDonis for his very useful answers in the previous thread...
Hello,
I know QED and QCD as isolated theories but now I thought about particle interactions with QED and QCD processes (like fpr proton-antiproton scattering). But I'm not sure how to interpret this mathematically.
As I understood my Feynman diagrams are nothing more like pictures for the...
Homework Statement
Consider the free real scalar field \phi(x) satisfying the Klein-Gordon equation, write the Hamiltonian in terms of the creation/annihilation operators.
Homework Equations
Possibly the definition of the free real scalar field in terms of creation/annihilation operators...
Hello! I read several books and took courses on quantum mechanics and particle physics and I understood the topics. However I feel that I have only pieces of informations without a global image of what is going on. For example in the particle physics classes we were given Feynman rules without...
I am getting started with QFT and I'm having a hard time to understand the quantization procedure for the simples field: the scalar, massless and real Klein-Gordon field.
The approach I'm currently studying is that by Matthew Schwartz. In his QFT book he first solves the classical KG equation...
I'm studying Quantum Field Theory and the first example being given in the textbook is the massless Klein Gordon field whose equation is just the wave equation \Box \ \phi = 0. The only problem is that I'm not being able to get the same solution as the book. In the book the author states that...
I have an acquaintance who maintains that in quantum field theory, primarily the cgs system is used. OK, I know it's not really important, but I was under the impression that everyone had switched to SI. (My book on quantum field theory has very few actual quantities with units outside of GeV...
In classical mechanics, the Hamiltonian and the Lagrangian are Legendre transforms of each other. By analogy, in quantum mechanics and quantum field theory, the relationship between the Hamiltonian and the Lagrangian seems to be preserved. Where can I find a derivation of the Lagrangian...
The thread https://www.physicsforums.com/threads/qft-operators-time-space-asymmetry.906369/ contains the first recommendation I have seen in these forums for Klauber's book, and instead of hijacking that thread I thought I might ask a question here. I find the book more readable than many for...
I want to clarify the relations between a few different sets of operators in a conformal field theory, namely primaries, descendants and operators that transform with an overall Jacobian factor under a conformal transformation. So let us consider the the following four sets of...
This question is about the use of bar on a fermionic field in a Lagrangian, the use of arrows on external fermion lines and the particle-antiparticle nature of a fermion.
For illustration of my question, I will use the following the charged-current interaction of the Standard model...
The decay processes of the ##W## bosons are completely governed by the charged current interaction terms of the Standard model:
$$\mathcal{L}_{cc}
= ie_{W}\big[W_{\mu}^{+}(\bar{\nu}_{m}\gamma^{\mu}(1-\gamma_{5})e_{m} + V_{mn}\bar{u}_{m}\gamma^{\mu}(1-\gamma_{5})d_{n})\\...
I see re normalization being discussed in many situations and it is not very clear what unites them. For example it is talked about during self energy, then when integrals are blown by high energy(in scattering problems I presume), or some problem with IR(the opposite).
Then there are these...
I have read many textbooks and googled google times for a clear explanation, but I could not find one. How does raising and lowering -annihilation/ creation-(is that energy or particle number?) translate to transition probabilities of path integral.
I'm currently studying Quantum Field Theory and I have a confusion about some mathematics in page 30 of Mandl's Quantum Field Theory (Wiley 2010).
Here is a screenshot of the relevant part: https://www.dropbox.com/s/fsjnb3kmvmgc9p2/Screenshot%202017-01-24%2018.10.10.png?dl=0
My issue is in...
Last year I finished the undergraduate course in Mathematical Physics. This year, more precisely in March, I'm going to start the graduate course to acquire a master's degree in Physics.
Now, for this course I must choose a research topic and find an advisor. This is being a little bit...
Hi,
I have recently began studying quantum field theory and have just seen how the quantization of the complex scalar field, noting that there is invariance of the action under a phase rotation shows the existence of antiparticles.
I just have a couple of questions, apologies in advance if...
I have seen the derivation for Unruh radiation for a massless, non-interacting scalar field (Carroll). Are there interesting differences that arise for more realistic standard model cases. For example, what does QCD look like for an accelerating observer? Any papers that detail this would be...
Asymptotic safety in quantum gravity is a local QFT. According to many people, local quantum field theories cannot be correct in terms of being a quantum gravity theory.
Lubos Motl outlines 4 reasons why they can't be right.
"Quantum gravity cannot be described as a local field theory in the...
I'm studying QFT in the path integral formalism, and got stuck in deriving the Schwinger Dyson equation for a real free scalar field,
L=½(∂φ)^2 - m^2 φ^2
in the equation,
S[φ]=∫ d4x L[φ]
∫ Dφ e^{i S[φ]} φ(x1) φ(x2) = ∫ Dφ e^{i S[φ']} φ'(x1) φ'(x2)
Particularly, it is in the Taylor series...
In quantum field theory, we use the universal cover of the Lorentz group SL(2,C) instead of SO(3,1). (The reason for this is, of course, that representations of SO(3,1) aren't able to describe spin 1/2 particles.)
How is the invariant speed of light enocded in SL(2,C)?
This curious fact of...
Hi all.
I am looking for a book in Quantum Field Theory, not for the first read. I have already studied it for university purpose, but now i would like to study the subject again from a book to cover holes and have a deeper understanding before starting a possible PhD.
I heard about Srednicki...
I'm looking at Aitchison and Hey's QFT book, trying to verify Eq. 8.27 (which is in fact problem 8.2). It asks us to verify that the matrix element for the scattering of a charged spin zero particle (s^+) is
<s^+,p'|j^\mu_{em,s}|s^+,p> = e(p+p')^\mu e^{-i(p-p')\cdot x}
where...
On page 9 of *Quantum theory of many-particle systems* by Alexander L. Fetter and John Dirk Walecka, during the derivation of the second-quantised kinetic term, there is an equality equation below:
>\begin{align}
\sum_{k=1}^{N} \sum_{W} & \langle E_k|T|W\rangle C(E_1, ..., E_{k-1}, W...
The Lorentz transformation operator acting on an undotted, i.e. right-handed, spinor can be expressed as $$e^{-\frac{1}{2} \sigma \cdot \mathbf{\phi} + i\frac{1}{2} \sigma \cdot \mathbf{\theta}}.$$
There is a very cool, almost childlike, derivation of this expression in Landau Vol. 4 S. 18 I've...
Sorry, I know this has been talked about many times before but I like to put the question in a direct way so I may understand.
Since there are more than 10^80 particles and radiation, how can a single point in space carry the values for all these fields at the SAME time all the time if they are...
I am trying to determine what types of field theories have a Lagrangian that is symmetric under an Infinitesimal acceleration coordinate transformations.
Does an infinitesimal generator of acceleration exist?
How could I go about constructing this matrix?
Hello.
I'm studying a course of the Quantum Field Theory and I got a question in a canonical quantization of a scalar field.
I don't write a full expression of the field quantization here but the textbook said terms with ei(p⋅x - Ept) are associated with an incoming particle and terms with...
Hello I am little bit confused about one topic on theoretical Physics and that is If we want to describe our Quantum world (example atoms in metal) then should I use Quantum field theory or Quantum mechanics?
The common presentation for free field quantization proceeds with the Lorentz and Coulomb (##\phi = 0, \,\nabla \cdot \mathbf{A} = 0 ##) constraints. Then ##A## can be defined
$$\mathbf{A} \propto \iint \frac{d^3 p}{\sqrt{2\omega_p}}\sum_{\lambda} \Big(e^{i\mathbf{p}\cdot...
As I understand it, the need for quantum field theory (QFT) arises due to the incompatibility between special relativity (SR) and "ordinary" quantum mechanics (QM). By this, I mean that "ordinary" QM has no mechanism to handle systems of varying number of particles, however, special relativity...
We have two theories namely,Quantum Field Theory which works very well at sub-atomic scales, and the General Relativity which works very well at very large scales.So, my question is where does statistical physics/mechanics fit in? What role statistical physics/mechanics play in today's modern...
Why is the partition function
##Z[J]=\int\ \mathcal{D}\phi\ e^{iS[\phi]+i\int\ d^{4}x\ \phi(x)J(x)}##
also called the generating function?
Is the partition function a q-number or a c-number?
Does it make sense to talk of a partition function in classical field theory, or can we define...
Dear Sir,
P 25 in quantum field theory for the gifted amateur One makes Fourier transforms from the position to the frequency space for the system of linear chain of N atoms.
How can I see that in the frequency space the excitations are uncoupled .
I also don’t understand equation 2.50
For a ##\phi^{3}## quantum field theory, the interaction term is ##\displaystyle{\frac{g}{3!}\phi^{3}}##, where ##g## is the coupling constant.
The mass dimension of the coupling constant ##g## is ##1##, which means that ##\displaystyle{\frac{g}{E}}## is dimensionless.
Therefore...
No. This is a noncovariant, observer-specific view.In the covariant, observer-independent view of fields, states are labeled instead by the causal classical solutions of hyperbolic field equations. On the collection of these the Peierls bracket is defined, which is the covariant version of the...
I've discovered a potential treasure horde tucked away in the deep dark folds of the world wide web. A 1625 page mammoth on all aspects of quantum field theory by Prof. Hagen Kleinert. There's a draft ed. for free available here -...