- #106
Tiran
- 97
- 36
Spin and stall aren't the same thing. Stalling in level flight should not induce a spin, it just causes the nose to fall suddenly. Some planes can't even be made to stall.rcgldr said:The ideal here is a conservative approach to avoid a stall, as some aircraft can't recover from a spin (for example, the Piper Cherokee Warrior is not certified for spins). 3 to 5 degrees nose up on approach (while descending at 3 degrees) should be slow enough to land on a longer runway. A pilot could try mostly holding attitude at 3 to 4 degrees nose up while following the glide slope, mostly using throttle to stay on the glide slope. There are exceptions, the twin engine civilian aircraft at a local (to me) airport land on a runway shared by commercial aircraft, and approach at a faster than normal speed (almost nose down) to avoid interfering with the airliner traffic, but the runway is long enough (since it's meant for commercial airliners) for the twins to bleed off speed once they're near the end of the runway, and land with margin to spare. In an emergency, with airliners put in a holding pattern, that runway would be more than long enough for something like a Cessna 182 to approach at 5 degrees nose up and land with margin to spare.
And not all aircraft approach nose up - it depends on configuration and approach speed. Put the nose 5° up with no flaps and you'll either climb or get too slow.
Planes are mostly flown by observing some preferred airspeed and altitude (or descent rate) and putting the nose and power wherever they might need to be to keep those and go to where you want to get to. The pilot may have no or even the wrong feeling about the nose attitude because that's not what they are looking at.