- #71
jumpjack
- 223
- 3
##v=\sqrt{\frac{m(\frac {F_t} m -gC_r)}{c}}tanh(\sqrt{\frac{(\frac {F_t} m -gC_r)c}{m}}t)##
Can also be written as:
##v(t) = \sqrt \frac {K_1}{ K_2} tanh (\sqrt {K_1 K_2} t)##
##K_1 = \frac {F_t} m - gC_r##
##K_2 = \frac 1 2 \rho C_d S * \frac 1 m ##
##K_1 = \frac Q m ##
##K_2 = \frac c m ##
##Q= mK_1##
##c = m K_2 = \frac 1 2 \rho C_d S##
##Qc = m^2 K_1 K_2 ##
##\frac Q c = \frac {K_1}{K_2}##
And, above all:
$$F_t = \frac {T_w} r $$
##T_w ## = Wheel torque <> EngineTorque
r = wheel radius - Typical value = 0.31 m
but we must take into account Overall Gear Ratio:
##T_w = T_e G##
G = overall gear ratio - Typical value for EVs = 8
hence:
$$F_t = \frac {T_e G} r$$
For typical values:
$$F_t = 26 T_e $$
$$v=\sqrt{\frac{m(\frac {\frac {T_e G} r} m -gC_r)}{c}}tanh(\sqrt{\frac{(\frac {\frac {T_e G} r} m -gC_r)c}{m}}t)$$
For typical values:
$$v=\sqrt{m\frac{ (\frac {26 T_e} m - 9.81 C_r) }{\frac 1 2 \rho C_d S}}tanh(\sqrt{ \frac{(\frac {26 T_e} m - 9.81 C_r)(\frac 1 2 \rho C_d S)}{m}}t)$$
But this behaviour is valid only as long as ##v<v_c##, with:
##v_c= \frac 4 {1000} RPM_{MaxTorque}##
After ##v_c##, ##T_e## is no longer constant but it decreases as ##\frac K v##... and I have yet to determine K value.
Can also be written as:
##v(t) = \sqrt \frac {K_1}{ K_2} tanh (\sqrt {K_1 K_2} t)##
##K_1 = \frac {F_t} m - gC_r##
##K_2 = \frac 1 2 \rho C_d S * \frac 1 m ##
##K_1 = \frac Q m ##
##K_2 = \frac c m ##
##Q= mK_1##
##c = m K_2 = \frac 1 2 \rho C_d S##
##Qc = m^2 K_1 K_2 ##
##\frac Q c = \frac {K_1}{K_2}##
And, above all:
$$F_t = \frac {T_w} r $$
##T_w ## = Wheel torque <> EngineTorque
r = wheel radius - Typical value = 0.31 m
but we must take into account Overall Gear Ratio:
##T_w = T_e G##
G = overall gear ratio - Typical value for EVs = 8
hence:
$$F_t = \frac {T_e G} r$$
For typical values:
$$F_t = 26 T_e $$
$$v=\sqrt{\frac{m(\frac {\frac {T_e G} r} m -gC_r)}{c}}tanh(\sqrt{\frac{(\frac {\frac {T_e G} r} m -gC_r)c}{m}}t)$$
For typical values:
$$v=\sqrt{m\frac{ (\frac {26 T_e} m - 9.81 C_r) }{\frac 1 2 \rho C_d S}}tanh(\sqrt{ \frac{(\frac {26 T_e} m - 9.81 C_r)(\frac 1 2 \rho C_d S)}{m}}t)$$
But this behaviour is valid only as long as ##v<v_c##, with:
##v_c= \frac 4 {1000} RPM_{MaxTorque}##
After ##v_c##, ##T_e## is no longer constant but it decreases as ##\frac K v##... and I have yet to determine K value.
Last edited: