- #141
Khashishi
Science Advisor
- 2,813
- 492
A sailboat is in a lake with the wind parallel to the sail. It doesn't accelerate. Now a person pulls the sail at an angle to the wind. This causes the sail to deflect the wind and the boat starts to move. In this case, the wind does work on the boat. The person requires force to move the sail, but he isn't doing any work to move the boat.
A wire in a magnetic field is like the boat. The electric current acts like the wind. But the electrons move parallel to the wire so there's no work on the wire. Applying the magnetic field deflects the electrons into the side of the wire, causing the wire to move. It is the motion of the electrons which does work on the wire, not the magnetic field. The electrons slow down when they ricochet off the side of the wire and push the wire. The magnetic field is exerting a force on the electrons, but not doing work.
A wire in a magnetic field is like the boat. The electric current acts like the wind. But the electrons move parallel to the wire so there's no work on the wire. Applying the magnetic field deflects the electrons into the side of the wire, causing the wire to move. It is the motion of the electrons which does work on the wire, not the magnetic field. The electrons slow down when they ricochet off the side of the wire and push the wire. The magnetic field is exerting a force on the electrons, but not doing work.