- #281
sfs01
- 22
- 0
The question you asked does not have anything to do with Aspect's experimental setup. In his set-up, there is a switch before the polariser, so the photons would go either through B or C, not through both. You are just unnecessarily complicating the set-up for no purpose. All the extra polariser does really is absorb some photons that you could be measuring instead, making it harder to do the experiment because there is less signal.miosim said:So what is your prediction for the experiment I described in the previous post and repeated below:
Let’s test this assumption using Aspect’s experimental setup.
1). First let's fully align polarizers A and B and observe a maximum (say 100%) correlation.
2). Set polarizer A and B at 90 deg and observe zero correlation.
3). Let’s add one more polarizers (C) between polarizer B and the source of photon and set this polarizers at intermediate angle of 45 deg and monitor correlated photons.
According to EPR model we should observe about 25% of correlated photons, because EPR photons on B side will be rotated by polarizers (B and C) and the intensity/probability of these photons could be calculated according to Malus’ law.
What is your prediction for Bell’s entangled photons for the step 3). ?
In any case, don't have the time to go through the full calculation, but for this specific set of angles I think the predictions for correlation are the same. There is a reason why Bell test experiments don't generally use 45 and 90 degrees, namely that the effect appears at intermediate angles.
Really don't get what your problem with Bell's theorem is. You need to get away from the idea that it references any specific experimental set-up, assumptions about polarisation or physical model whatsoever.
It is simply a mathematical theorem that anyone with undergrad level statistics knowledge can follow and that is undoubtedly correct in itself. The only thing you can doubt is, if the assumptions made for the proof hold in the case of a specific physical experiment in question. But the assumptions Bell uses are actually very general, they are pretty much:
- you have 2 measurement devices A and B that measure the state of something (represented by a hidden variable or set of hidden variable that is the initial state)
- the result of the measurement by device A depends on the setting of device A and the hidden variable only (but not on the setting of device B)
- the result of the measurement by device B depends on the setting of device B and the hidden variable only (but not on the setting of device A)
Given that these assumptions hold, the correlation between the results of the measurements at A and B will follow Bell's inequalities per the mathematical proof.
Consequently, should we observe that anything in nature does not observe Bell's inequalities - such as Aspect's experiment - we have to conclude that either the experiment had systematic errors affecting the correlations or at least one of the assumptions made for this proof do not hold in nature (for example there are non-local interactions such that the result of device A depends on the result of device B as it does for entangled photons).