- #36
DrGreg
Science Advisor
Gold Member
- 2,474
- 2,083
It is perhaps worth mentioning two concepts, "conservation" and "invariance", which can sometimes be confused with each other.
A conserved quantity is something measured by a single observer that doesn't change over time; for example it has the same value before and after a collision, and typically it is the sum of several measurements, e.g. of multiple particles. Examples are energy (a 1D number), momentum (a 3D vector), four-momentum (a 4D vector), all when there are no external forces, of course. In Newtonian physics, mass is also conserved. In relativity, relativistic mass may be conserved (in the absence of any other form of energy) but rest mass isn't.
An invariant quantity is a single measurement whose value all observers agree upon, i.e. a frame-independent value. Examples are proper time, (scalar) proper acceleration, and rest mass. Or anything that can be expressed in the form [itex]g_{ab}U^aV^b[/itex] (where U and V are genuine 4-vectors).
So, energy and momentum are both conserved but neither is invariant. In relativity, rest mass is invariant but not necessarily conserved across multi-particle interactions. (In Newtonian physics, mass is both conserved and invariant.)
A conserved quantity is something measured by a single observer that doesn't change over time; for example it has the same value before and after a collision, and typically it is the sum of several measurements, e.g. of multiple particles. Examples are energy (a 1D number), momentum (a 3D vector), four-momentum (a 4D vector), all when there are no external forces, of course. In Newtonian physics, mass is also conserved. In relativity, relativistic mass may be conserved (in the absence of any other form of energy) but rest mass isn't.
An invariant quantity is a single measurement whose value all observers agree upon, i.e. a frame-independent value. Examples are proper time, (scalar) proper acceleration, and rest mass. Or anything that can be expressed in the form [itex]g_{ab}U^aV^b[/itex] (where U and V are genuine 4-vectors).
So, energy and momentum are both conserved but neither is invariant. In relativity, rest mass is invariant but not necessarily conserved across multi-particle interactions. (In Newtonian physics, mass is both conserved and invariant.)