- #176
Hiddencamper
- 403
- 182
zapperzero said:http://www.tepco.co.jp/en/nu/fukushima-np/images/handouts_111122_03-e.pdf
says otherwise. Both trains available and functioning, but not at full capacity
According to the document above, the operation was confirmed by observing steam coming out of the appropriate place.
" At 21:30. the operator conducted open op
eration of valve 3A and confirmed
generation of steam. "
(from the same cited document)
I... what? The point I was making was that it was not damaged in any way - yet did not get used in the event.
What rupture disks?
You don't like temp/pressure? Fine. Let's say an earthquake damaged a steam downcomer, so that there is now a big crack in it, above the water level? Now you can't scrub your steam, although there is plenty of water.
I have a lot of doubt about your claim that the wetwell provides sufficient scrubbing, too. I seem to remember dramatic spikes in readings of the counters at plant boundary, corresponding to venting operations.
The operators of the plant were not convinced either, as I recall there was much wringing of hands before venting was even attempted, as there was explicit concern at TEPCO over the pace/effectiveness of the evacuation effort. Venting was delayed too much, actually.
You are basing this belief on what, exactly?
I really appreciate a link. I want to add first off, if the IC was truly functional, unit 1 would not have had an accident. I also want to add that the official report from Japan's national diet concludes that the "IC systems were acknowledged to have largely lost their cooling function." (see page -80- of the following link). That is non-functional. Just like how HPCI was non-functional at unit 1, due to the loss of electric power causing the system to be failed in a state where it could not operate, IC was also failed at unit 1, due to the loss of electric power causing the system to be failed in a state where it could not operate.
http://www.cas.go.jp/jp/seisaku/icanps/eng/02Attachment1.pdf
They additionally state, in their report on the accident, that "The other isolation valves, which had been fully open until that time, were fully or almost fully closed as a result of the fail-safe function triggered by total loss of AC and DC power." On page 34 of the following link.
http://www.cas.go.jp/jp/seisaku/icanps/eng/03IIfinal.pdf
There's also the fact that if you stopped IC for long enough, you lose the ability to have natural circulation due to the generation of various gases and the like. But that's neither here nor there, I just know about this because I know Oyster Creek has safety analysis about it.
With regards to rupture disks, I'm talking about unit 2's rupture disc not operating, which made the accident at unit 2 worse than it needed to be. You can see this on the validated timeline in INPO 11-05 (the publicly available US industry document on the accident), which states on 13-Mar at 1100, the rupture disk failed to break. This is important because a rupture disk would be the primary method of activating a passive filter. Again on the 14th at 1130, they could not break it. Later on the 15th around midnight, when pressure was 40 psi above the rupture disk break pressure, it still did not break.
As for an earthquake damaging a downcomer. Are we talking about a steam downcomer or an SRV downcomer? For a steam downcomer, that's primarily important for LOCA, or immediately after the vessel breaches. With a broken steam downcomer, you would have already opt to flood the containment due to the loss of all ability to cool the core, which would obviate the need for it. The steam downcomers are designed to ensure high pressure/temperature steam is vented to the suppression pool for quenching, to prevent containment damage. If your downcomer breaks, you are likely to damage your containment due to the loss of pressure suppression capability, and you would end up breaching it, making your passive filter useless, and wet spraying and scrubbing, along with containment flooding, more useful.
Spikes in radiation measurements will happen, when you melt fuel, and that fuel then melts through the vessel into the drywell, where it then causes over pressure, such that you now have escaping noble gas inventory being ejected. Appropriate response with portable pumping systems would have directed containment drywell injection prior to the hot debris ejection event (my plant's SAMGs do, and they are nearly identical to every US BWR). Spraying would also be in progress through portable pumps. Ideally though, you would have used your portable equipment to prevent the core damaging event in the first place, but even assuming you failed at that (maybe because your SRVs were depleted...), running containment spray using portable equipment, venting from the wetwell (not the drywell) initially and making use of the vacuum breakers to siphon drywell radionuclide inventory through the pool, those would be useful. There are some cases where drywell filtering may be needed, and the NRC agrees with that, but it's not the only way to skin the cat.
Fully agree venting was delayed much too much though. Unfortunately they did not have the resources, plans, training, or equipment to handle a multi-unit event of this magnitude.