- #71
RockyMarciano
- 588
- 43
I agree it is a much stronger claim, but again the claim is done not for any possible 4-dimensional Lorentzian manifold which is what you seem to be equating with a "spacetime". We surely agree we are only concerned here with physically plausible Lorentzian manifolds and those are the ones that I'm referring to as "spacetimes", but that's just terminology. As you say it is true of course tha not every possible Lorentzian 4-manifold even admits a foliation. But since we are talking about physics, those that are plausible as physical scenarios(leaving aside the special models of isolated objects that have timelike Killing vector fields) must admit a foliation and the foliation must be time-orthogonal if it is to have anything resembling dynamics.PeterDonis said:At a single event, yes, you can always find a timelike vector that is orthogonal to a chosen set of 3 orthogonal spacelike vectors. But your claim is much stronger: you are claiming that, in any spacetime, you can find a foliation by spacelike hypersurfaces covering the entire spacetime, and a timelike vector field covering the entire spacetime that is everywhere orthogonal to every hypersurface in the foliation. I don't think that claim is true for every possible spacetime. (For one thing, not every possible spacetime even admits a foliation to begin with; see below.)
But let's constrain the discussion to the GWs models, they certainly rely on linearized gravity and linearized gravity has as departure premise the decomposition of its metric tensor components in a 3+1 formulation in the strong form you mentioned above:time orthogonal spacelike hypersurfaces that covers the totality of the spacetime considered as physically relevant:Minkowski spacetime perturbed by a tidal curvature wavefield. This strong premise is actually what imposes the use of the harmonic coordinate condition in order to even have a wave equation.
When trying to understand the consequence of this particular foliation in the way the LIGO interferometer measures the tidal wavefield passing by, it is important to have means for separating the dynamics of the perturbation ##h_{\mu\nu}=g_{\mu\nu}-η_{\mu\nu}## from the dynamics of the measuring tool in GR, the inner product ##g_{\mu\nu}## because all of our other measurements are usually based in comparing with a fixed background(either because they use euclidean-Newtonian or Minkowskian-SR backgrounds or in the GR case time independent spacetimes with no dynamics) clearly separated from the dynamycs being measured. I admit that I still don't know how that is achieved mathematically, even after reading much of what Kip Thorne has written on the subject.
Agreed. and those examples in Hawking & Ellis are all referred(for general GR solutions without timelike KVFs) to highly pathological or physically absurd Lorentzian manifolds. IIRC there are even example of manifolds not following the Hausdorff and second countability condition, which is really pathological. Let's remember here that the majority of solutions of the EFE are not physically relevant, giving results like CTCs, or not fulfilling the minimumenergy conditions, etc.A foliation is not the same thing as a spacetime. Hawking & Ellis is full of examples of spacetimes that cannot be foliated by a family of spacelike hypersurfaces.
Last edited: