LIGO light changes frequency not wavelength

In summary, the conversation discusses the effects of a gravitational wave on space and the laser light in LIGO arms. It is mentioned that the frequency of the laser light changes, but not necessarily the wavelength, and this is dependent on the chosen coordinate chart. The concept of stretching of spacetime and the potential impact on LIGO arms is also discussed, along with the idea that the preferred coordinate system for analyzing LIGO measurements is one in which the detector is at rest. The conversation also touches on the concept of curvature of spacetime and how it relates to gravitational waves. Finally, there is a question about the relationship between gravitational waves and the speed of light, and the role of interference patterns in LIGO's measurements.
  • #106
PeterDonis said:
More precisely, because of the "magnification" effect of the cavity, the contribution to the overall distance measurement of the distance from the ITM to the beam splitter is very small (a fraction of a percent). That is because the length of the cavity is magnified by a factor of 1000 or so while the ITM-beam splitter distance is not.
Exactly.
It does for the LIGO team's analysis because their "fiducial" point is part of the overall construction of the coordinate chart they are using. It is true that, in principle, any choice of chart should give the same values for actual observables like the interference pattern at the photodetector, so in that sense the choice of fiducial point doesn't matter.
Thank you.
Then that is off topic for this thread and you should start a new one.
OK, I'll drop it at that then. However, I think the point that what is measured in practice is the phase delay resulting from the influence of the GW on the F-P cavity relates back to the original question. Thanks for your responses.
 
Back
Top